EFFECT OF POST-HEATING TEMPERATURE ON EFFICIENCY OF DYE-SENSITIZED SOLAR CELL WITH ZnO : AL THIN FILMS PREPARED BY SOL-GEL SPIN COATING

Siregar, Nurdin and Motlan and Panggabean, Jonny Haratua (2021) EFFECT OF POST-HEATING TEMPERATURE ON EFFICIENCY OF DYE-SENSITIZED SOLAR CELL WITH ZnO : AL THIN FILMS PREPARED BY SOL-GEL SPIN COATING. Journal of Physical Science, 32 (02). pp. 57-70. ISSN 2180-4230

[thumbnail of Reviewer.pdf]
Preview
Text
Reviewer.pdf - Published Version

Download (660kB) | Preview
[thumbnail of Turnitin.pdf]
Preview
Text
Turnitin.pdf - Published Version

Download (1MB) | Preview
[thumbnail of Submit Accepted.pdf]
Preview
Text
Submit Accepted.pdf - Published Version

Download (3MB) | Preview

Abstract

Dye-sensitized solar cell (DSSC) has a great potential to convert solar light into electricity. In this article, a prototype of DSSC had been successfully fabricated using ZnO:Al thin film and dye from red dragon fruit as a working electrode. ZnO:Al thin films were prepared by a sol-gel spin coating method with variation of post-heating temperatures. The XRD result confirms that all ZnO:Al thin films have a hexagonal structure with crystal sizes of 16 nm to 41 nm. SEM analysis showed the nanoparticles with particle size of 30 nm to 80 nm. The bandgap ranges from 3.16 eV to 3.40 eV. The EIS analysis reveals that charge transfer resistance greatly decreases with the rise of temperature. The efficiency of DSSC gradually improved with increasing the post-heating temperature. ZnO:Al with a post-heating temperature of 600°C had the highest efficiency of 0.398%.

Item Type: Article
Keywords: Dye sensitised solar cell; ZnO:Al thin films; Sol-gel spin coating; Red dragon fruit extract
Subjects: Q Science > QC Physics
Q Science > QC Physics > QC120 Descriptive and Experimental mechanics
Divisions: Fakultas Matematika dan Ilmu Pengetahuan Alam > Fisika
Depositing User: Mrs Harly Christy Siagian
Date Deposited: 14 Oct 2021 05:39
Last Modified: 14 Oct 2021 05:39
URI: https://digilib.unimed.ac.id/id/eprint/43434

Actions (login required)

View Item
View Item