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 This study offers a new technique for constructing percentile bootstrap intervals to 
predict the regression of univariate local polynomials. Bootstrap regression uses 
resampling derived from paired and residual bootstrap methods. The main 
objective of this study is to perform a comparative analysis between the two 
resampling methods by considering the nominal coverage probability. Resampling 
uses a nonparametric bootstrap technique with the return method, where each 
sample point has an equal chance of being selected. The principle of nonparametric 
bootstrapping uses the original sample data as a source of diversity in contrast to 
parametric bootstrapping, where the variety comes from generating a particular 
distribution. The simulation results show that the paired and residual bootstrap 
interval coverage probabilities are close to nominal coverage. The results showed 
no significant difference between paired bootstrap interval and percentile residual. 
Increasing the bootstrap sample size sufficiently large gives the scatterplot 
smoothness of the confidence interval. Applying the smoothing parameter by 
choice gives a second-order polynomial regression with a smoother distribution 
than the first-order polynomial regression. The scatterplot shows that the second-
degree polynomial regression can capture the data curvature feature compared to 
the first-degree polynomial. The bands made from second-degree polynomials give 
a narrower width than first-degree polynomials. In contrast, applying optimal 
smoothing parameters to the model provides different conclusions by using 
smoothing parameters based on choice. In addition to the differences based on the 
scatterplot, the bootstrap estimates of the coverage probability are also other. 
Selecting smoothing parameters based on a particular value provides probability 
coverage with the paired bootstrap method for the first-degree local polynomial 
regression is 0.93, while the second-degree local polynomial is 0.96. The 
probability of coverage based on the residual bootstrap method for the first-degree 
local polynomial regression is 0.95, while the second-degree local polynomial is 
0.96. The probability coverage based on the optimal parameters of the paired 
bootstrap method for the first-degree local polynomial regression is 0.945, while 
the second-degree local polynomial is 0.93. The residual bootstrap method gives 
the first-degree local polynomial regression of 0.95, while the second-degree local 
polynomial is 0.93. In general, both bootstrap methods work well for estimating 
prediction confidence intervals. 

Keywords: 
Simulation;  
Percentile Bootstrap;  
Local Polynomial; 
Regression;  
Paired Bootstrap;  
Residual Bootstrap. 
 

 

 

 
 

   
https://doi.org/10.31764/jtam.v7i1.11752  

 
This is an open access article under the CC–BY-SA license 
 

 
——————————      —————————— 

 

A. INTRODUCTION  

Efron & Tibshirani (1994) were pioneers in introducing the bootstrap method as a 

resampling technique that is very useful for estimating statistics without fulfilling certain 

assumptions. In the bootstrap method, there is bootstrapping terminology which is a 
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resampling procedure from the original data to produce many simulated samples (bootstrap 

samples). Simamora et al. (2015) suggested using a computer with a high ability level to 

perform bootstrapping in the simulation. Expensive simulations are options if the statistics are 

not in closed form or more complex statistics that do not require certain assumptions. 

Bootstrapping is a resampling technique that is useful for analysing difficult statistics without 

strict rules or the parametric assumptions of the applied model are not met (Solci et al., 2022). 

The working principle of bootstrapping relies on resampling the empirical distribution, which 

can be done by weakening parametric assumptions. One of the complex and sensitive statistics 

is constructing a confidence interval for nonparametric regression prediction. In practice, 

constructing standard confidence intervals based on asymptotic distribution theory can be 

wildly inaccurate (Diciccio & Efron, 1996). The curve features of the Local Polynomial 

Regression and the lower and upper limits of the interval are far from the truth. 

The failure of the normality approach to provide a valid confidence interval has prompted 

some alternative methods. Eubank & Speckman (1993) proposed a bias-corrected confidence 

band in a nonparametric kernel regression model. The consideration is only on the bands 

generated from the kernel estimator of the regression curve and the selection of rounds based 

on the behaviour of the data. The consideration is only on the bands generated from the kernel 

estimator of the regression curve and the selection of rounds based on the behaviour of the 

data. The results of the Monte Carlo simulation show that the mean response confidence 

interval has asymptotically correct coverage and behaves well in small sample studies. They 

concluded that Bonferroni-type bands have conservative asymptotic coverage behaviour for 

large samples without bias correction. Then,  Xia (1998) answered the open-ended question on 

page 1298 of (Eubank & Speckman, 1993). They used local polynomial regression model 

matching to construct confidence intervals for the mean of response using cross-validation and 

plug-in methods to select bandwidth. 

Härdle & Bowman (1988) discuss the performance of bootstrapping and direct methods on 

a nonparametric regression model. They use the principle of good local adaptive choice of local 

smoothing parameters. This principle is applied to bootstrap sampling to estimate mean 

squared errors and percentile intervals from nonparametric estimates at test points. These two 

applications compare bootstrap performance with a simple "plug-in" method based on direct 

estimation (asymptotic expansion). In general, the performance of these two methods is 

generally very similar. However, bootstrap has the slight advantage of not being as sensitive to 

second derivatives. Moreover, in the confidence interval construct, the bootstrap can reflect 

features such as skewness but slightly less than the target confidence interval due to 

inaccuracies in centring. Ringle et al. (2012) warned that the correct setting could provide a 

reasonable bootstrap confidence interval estimate. Poor choice of options can lead to a 

significantly biased estimate of the standard error and cause the bootstrap estimate to become 

unstable. 

Özdemir (2013) showed a better pencil bootstrap interval on the probability of error in 

Type I and more efficient computation time. Aguirre-Urreta & Rönkkö (2017) revealed that the 

confidence interval of the pencil bootstrap is the most straightforward approach, but it is 

necessary to consider the exact statistical distribution. This approach will work best if the 

statistical distribution is symmetrical and centred on the original estimate. Then, (Jung et al., 
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2019) show that the coverage probability of the bootstrap percentile confidence interval is 

closer to the nominal coverage. They study general structured component analysis without the 

need for distributional assumptions. Gultom et al. (2022) applied the Gompertz Growth Model 

with Levenberg–Marquardt iteration on the soybean growth process. They conclude that the 

bootstrap resampling process in the growth model does not change the characteristics of the 

data (information from the data), and aims to fulfill the assumption of residual normality. 

This approach will work best if the statistical distribution is symmetrical and centred on 

the original estimate. Then, (Jung et al., 2019) show that the coverage probability of the 

bootstrap percentile confidence interval is closer to the nominal coverage. The application of 

the paired and residual nonparametric bootstrap method aims to construct predictive 

confidence intervals for local polynomial regression. Then perform a comparative study 

between the two nonparametric bootstrap methods by considering the bootstrap estimate for 

the standard error of the pivot quantity and the proximity of the empirical probability coverage 

of the bootstrap to the nominal range. The basic idea uses the results of (Mansyur & Simamora, 

2022). 

The organisation of this paper is as follows. The first section presents an introduction 

covering the background and proposals of this research. The second part describes the research 

method and summarises the concepts and theories of the local polynomial regression model 

and bootstrap. This section also provides a new algorithm (novelty) related to the bootstrap 

estimation of confidence intervals for local polynomial regression predictions with nested 

bootstrap using paired and residual bootstrap methods. The third section deals with the results 

and discussion of the simulation of the new algorithm. The last section includes research 

conclusions and suggestions for further development. 

 
B. METHODS 

This research method is a combination of literature review and simulation. The literature 

review aims to provide a framework for deriving a new algorithm. At the same time, the sample 

data follows the data generated from the literature of (Eubank & Speckman, 1993). The 

simulation sample follows the resampling of the generation sample data using paired and 

residual bootstraps. Figure 1 presents the flow of thinking after conducting a literature review. 

This flow only displays the main stages in the simulation and analyses the output of the 

simulation. The following section will explain some parts of these stages. Section 1 summarises 

the literature review on the concepts and theories of local polynomial regression, paired 

bootstrap and residuals. Section 2 presents the proposed new algorithm of bootstrap percentile 

confidence intervals for predicting local polynomial regression in detail, as shown in Figure 1. 
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Figure 1. Simulation Flow and Simulation Output Analysis 

 
1. Summary of Literature Review 

This section summarises the concepts and theories of local polynomial regression. To make 

writing easier, LPR-1 is an acronym for first-degree Local Polynomial Regression (LPR), and 

LPR-2 is an acronym for second-degree Local Polynomial Regression. Then in this section also 

summarises the paired and residual bootstrap method in general. The combination of the LPR 

concept and theory and the bootstrap method proposes two new algorithms for bootstrap 

percentile interval estimation based on the empirical distribution of pivot quantities. We 

mention the terminology of the two algorithms with the paired bootstrap percentile interval and 

residual with the acronyms CI-Paired and CI-Residual, respectively. 

a. Univariate Local Polynomial Regression 

Nonparametric regression is an extension of the parametric regression model. The 

average response does not have a specific trend but is constructed according to a data-

based factual information set. Local polynomial regression (LPR) is a nonparametric 

regression model that estimates the relationship between the independent and 

dependent variables without assuming any functional form. Cleveland (1979) presented 

a univariate LPR model in the following form, 

 𝑦(𝑥𝑖) = 𝑔(𝑥𝑖) + 𝜀𝑖  for 𝑖 = 1,2,⋯ , 𝑛,      (1) 

where 𝑔(𝑥𝑖)  is an unknown smoothing function and 𝜀𝑖  is a random variable 

independently and identically distributed. The function 𝑔  is the expectation of the 

response that needs to be estimated. Meanwhile, the random variable 𝜀  has the 

expectation 𝐸(𝜀) = 0 and the constant variance, 𝑉𝑎𝑟(𝜀) = 𝜎2 . According to (de 

Brabanter et al., 2013), as long as the (𝑝 + 1)𝑡ℎ derivative of 𝑔 at the point of interest 𝑥0 

exists, the function 𝑔(𝑥𝑖) can be approximated locally with a polynomial degree 𝑝,  

 𝑔(𝑥𝑖) ≈ ∑
𝑔𝑗(𝑥0)

𝑗!
(𝑥𝑖 − 𝑥0)

𝑗 ≡
𝑝
𝑗=0 ∑ 𝛽𝑗(

𝑝
𝑗=0 𝑥𝑖 − 𝑥0)

𝑗 .     (2) 

Polynomial matching locally or, in other words, looks for the estimated parameter 𝛽𝑗 on 

the right-hand side of equation (2) using the weighted least squares method with 

minimizing the problem, 

 �̂�𝑗 = min
𝛽
∑ [𝑦(𝑥𝑖) − ∑ 𝛽𝑗(𝑥𝑖 − 𝑥0)

𝑗𝑝
𝑗=0 ]

2
𝑊(|𝑥0 − 𝑥𝑖|/Δ(𝑥0)

𝑘
𝑖=1    (3) 
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where 𝑘 = ⌊γ𝑛⌋ represents the number of points 𝑥𝑖 ∈ ℕ(𝑥0). The γ parameter is the curve 

smoothing parameter, and n is the sample size. The W function is the selectable weight 

function and Δ(𝑥0) = maximum
𝑥𝑖∈ℕ(𝑥0) 

|𝑥𝑖 − 𝑥0|. Cleveland (1979) characterizes the W function 

as follows: 

1) W(x) > 0, for |x| < 1; 

2) W(−x) = W(x); 

3) W(x) is a non-increasing function for x ≥ 0; 

4) W(x) = 0, for |x| ≥ 1. 

 

Researchers usually choose the γ value of between zero and one. It is necessary to 

consider the magnitude of the γ value, where the γ value close to zero will predict 

overfitting or a wavy curve surface. The γ value close to one will provide a smooth 

surface curve prediction or underfitting but omit the original data features. Mansyur & 

Simamora (2022) offer a search algorithm for optimal smoothing parameters using 

cross-validation. The choice of the polynomial degree also determines the curve's 

smoothness. Usually, researchers use the low-degree polynomial, where the first degree 

is a linear polynomial and the second degree is a quadratic polynomial. 

Fan & Gijbels (1960) provide a solution to equation (3) using the weighted least squares 

method in the form of a matrix equation, 

 �̂�𝛾 = (𝑿𝛾
𝑇𝑾𝛾𝑿𝛾)

−1
𝑿𝛾
𝑇𝑾𝛾𝒀, (4) 

where  

𝑿𝛾 = (

1 (𝑥1 − 𝑥0) ⋯ (𝑥1 − 𝑥0)
𝑝

1 (𝑥2 − 𝑥0) ⋯ (𝑥2 − 𝑥0)
𝑝

⋮
1

⋮
(𝑥𝑘 − 𝑥0)

⋮
⋯

⋮
(𝑥𝑘 − 𝑥0)

𝑝

);  𝒀 = (

𝑦(𝑥1)
𝑦(𝑥2)
⋮

𝑦(𝑥𝑘)

);  �̂�𝛾 =

(

 
 
�̂�0
�̂�1
⋮
�̂�𝑝)

 
 

;  

and Wγ is a diagonal matrix of size k×k whose diagonal element contains the sequence 

𝑊(|𝑥0 − 𝑥1|/Δ(𝑥0) ,𝑊(|𝑥0 − 𝑥2|/Δ(𝑥0), ⋯ ,𝑊(|𝑥0 − 𝑥𝑘|/Δ(𝑥0). 

Following the similarity as in the case of the linear regression model, the prediction of 

LPR at a point x0 using the weighted least squares method yields, 

 �̂�(𝑥0) = �̂�(𝑥0) = ∑ �̂�𝑗𝑥0
𝑗𝑝

𝑗=0 . (5) 

Readers interested in studying more about the weighted least squares method can read 

the literature of (Draper & Smith, 1998). 

b. Paired and Residual Bootstrapping 

Efron & Tibshirani (1994) present two resampling methods, paired and residuals 

bootstrap processes, in a linear regression model. They give an open problem on page 

113, which is the best between paired and residual Bootstrapping? The answer is left to 

us to what extent we trust the linear regression model. We conclude that there are four 

exciting provisions from the results of the analysis of (Efron & Tibshirani, 1994) 

regarding the results of the percentile regression simulation of cholestyramine data, 

namely: 
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1) Paired bootstrapping is slightly more sensitive than residual bootstrapping; 

2) The error and mean of the response for paired bootstrapping do not depend on the 

covariates of the original data. The reason is that the covariates are random, unlike 

the residuals, in which the covariate structure is unchanged; 

3) The residual bootstrap has the same suitability as the original data; 

4) The bootstrap method does not provide a unique conclusion for the particular 

concept. 

 

Efron & Tibshirani (1994) claim that the two methods are equivalent when the sample 

size reaches infinity (asymptotic). The difference will appear if the sample size is 

relatively small. Chernick & LaBudde (2014) also review these two methods. 

Unfortunately, this literature does not contain exciting statements in the bootstrapping 

process, only focusing on algorithms and coding in the R programming language.  

Based on the two types of literature provides information that the difference lies only in 

the resampling scheme, and we will summarize it further. Suppose the linear regression 

model is 𝑦𝑗 = 𝑥𝑗
𝑇𝛽 + 𝜀𝑗 , where (𝑥𝑗 , 𝑦𝑗) is an ordered pair of responses and a covariate 

vector of size 𝑝 × 1. The difference between the resampling schemes of the two methods 

is as follows. 

1) Paired bootstrap takes a simulated sample (bootstrap sample) from the original data 

(𝑥1, 𝑦1),⋯ , (𝑥𝑛, 𝑦𝑛) independently with returns. Each original data point has an equal 

chance of being taken as a sample point, 1/𝑛 . The resampling process allows a 

bootstrap sample to have two or more of the same sample points or an original data 

point to be taken twice or more as members of the bootstrap sample. 

2) Residual Bootstrap performs the first procedure by matching the original data 

(𝑥1, 𝑦1),⋯ , (𝑥𝑛, 𝑦𝑛) into the model to get �̂�𝑗 = 𝑥𝑗
𝑇�̂�. Then calculate each residual 𝜀�̂� =

𝑦𝑗 − 𝑥𝑗
𝑇�̂� which gives the residual vector �̂�𝑇 = (𝜀1̂, ⋯ 𝜀�̂�). Determines �̂�𝑗

∗ = 𝑥𝑗
𝑇�̂� + 𝜀�̂�

∗ 

where taking 𝜀�̂�
∗  from a point on the vector �̂�𝑇  independently with the return. The 

probability that each 𝜀�̂� ∈  �̂�
𝑇 is drawn as a bootstrap sample point 𝜀�̂�

∗ is the same, i.e. 

1/𝑛, and it is possible to be drawn twice or more as a member of a bootstrap sample, 

�̂�∗𝑇 = (𝜀1̂
∗, ⋯ , 𝜀�̂�

∗). We repeat this process for another observation to get a bootstrap 

sample (𝑥1, �̂�1
∗),⋯ , (𝑥𝑛, �̂�𝑛

∗). 

 

2. Paired and Residual Bootstrap Percentile Interval 

Wasserman (2004) and (Wasserman, 2006) give the pivot quantity 𝑍𝑛 = 𝜃𝑛 − 𝜃   for the 

exact interval, 

 𝜃𝑛 ± 𝐻(1−𝛼 2⁄ )
−1 , (6) 

where 𝐻(1−𝛼 2⁄ )
−1 = 𝑧𝑛

(1−𝛼 2⁄ )
 is the (1–α/2)-th quantile of the H distribution. The H distribution is 

a Cumulative Density Function (CDF) of the unknown Zn pivot. Suppose �̂� is a bootstrap estimate 

for the H distribution considering the pivot 𝑍𝑛
∗𝑏 = 𝜃𝑛

∗𝑏 − 𝜃𝑛. The bootstrap percentile interval for 

the theta parameter is 

 𝜃𝑛 ± �̂�(1−𝛼 2⁄ )
−1  (7) 
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where �̂�(1−𝛼 2⁄ )
−1 = 𝑧𝑛

∗(1−𝛼 2⁄ )
 is the bootstrap percentile (1–α⁄2)-th of the �̂� distribution. Hall 

& Horowitz (2013) performed a double bootstrap resampling to get the desired bootstrap 

percentile interval. It informs that multiple pivots in bootstrap can be done by considering the 

conditions in the model. We can derive two bootstrap percentile interval algorithms based on 

the literature review. 

a. Paired Bootstrap Percentile Interval Algorithm 

Based on the explanation of paired bootstrap in the previous section, we derive the steps of 

the paired bootstrap percentile interval algorithm. 

1) Specifying a bootstrap sample (𝑥1
∗, 𝑦1

∗),⋯ , (𝑥𝑛
∗ , 𝑦𝑛

∗)  with conditions as described in 

Paired Bootstrap. 

2) Fitting a model using the bootstrap sample in step (1) uses equation (5) to get 

(𝑥1
∗, �̂�1

∗),⋯ , (𝑥𝑛
∗ , �̂�𝑛

∗). 

3) Calculating the residual from each bootstrap sample point 𝜀�̂�
∗ = 𝑦𝑖

∗ − �̂�𝑖
∗. 

4) Normalizing for each bootstrap residual from step (3), 𝜀�̃�
∗ = 𝜀�̂�

∗ −
∑ �̂�𝑖

∗𝑛
𝑖=1

𝑛
. Suppose the 

bootstrap residual normalization vector �̃�∗𝑇 = (𝜀1̃
∗, ⋯ 𝜀�̃�

∗). 

5) Determining the residual vector with bootstrap double �̃�∗∗𝑇 = (𝜀1̃
∗∗, ⋯ 𝜀�̃�

∗∗)  using 

independent and random retrieval with returns from the bootstrap residual 

normalization vector �̃�∗𝑇 = (𝜀1̃
∗, ⋯ 𝜀�̃�

∗). 

6) Repeating steps (1) to (5) B times to get the distribution �̂�(𝜀�̃�
∗∗). The distribution of 

�̂�(𝜀�̃�
∗∗) is CDF of the pivot 𝜀�̃�

∗∗. 

7) Determining the percentile interval of the paired bootstrap (CI-Paired) at point 𝑥0 

using equation (5), 

 �̂�𝑛(𝑥0) ± �̂�(1−𝛼 2⁄ )
−1 (𝜀0̃

∗∗), (8) 

 where �̂�𝑛(𝑥0)  is prediction of LPR at point x0 with using original data and 

�̂�(1−𝛼 2⁄ )
−1 (𝜀0̃

∗∗) =  𝜀0̃
∗∗𝐵(1−𝛼 2⁄ )

 is the bootstrap percentile (1-α⁄2)-th of the �̂�(𝜀0̃
∗∗) 

distribution. 

 
b. Residual Bootstrap Percentile Interval Algorithm 

Following the sampling of the residual bootstrap, we derive the steps of the residual 

bootstrap percentile interval algorithm. 

1) Fitting the original data (x1,y1),⋯, (xn,yn)  into the model using equation (5) to get 

(𝑥1, �̂�1),⋯ , (𝑥𝑛, �̂�𝑛). 

2) Calculating the residuals from each point of the original data 𝜀�̂� = 𝑦𝑖 − �̂�𝑖 . 

3) Normalizing for each residual data point in step (2) to get 𝜀�̂� −
∑ �̂�𝑖
𝑛
𝑖=1

𝑛
. Suppose the 

residual normalization vector is �̃�𝑇 = (𝜀1̃, ⋯ 𝜀�̃�). 

4) Determining a bootstrap sample point �̂�𝑖
∗ = �̂�𝑖 +  𝜀�̃�

∗  where  𝜀�̃�
∗  is an independent 

random sampling with the return of the residual normalized vector �̃�𝑇 = (𝜀1̃, ⋯ 𝜀�̃�). 

Suppose the bootstrap sample point set is (𝑥1, �̂�1
∗),⋯ , (𝑥𝑛, �̂�𝑛

∗). 

5) Fitting the bootstrap sample (𝑥1, �̂�1
∗),⋯ , (𝑥𝑛, �̂�𝑛

∗) into the model using equation (5) to 

get a double bootstrap sample (𝑥1, �̂�1
∗∗),⋯ , (𝑥𝑛, �̂�𝑛

∗∗). 
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6) Calculating the residual from point each of the double bootstrap sample  𝜀�̂�
∗∗ = �̂�𝑖

∗ −

�̂�𝑖
∗∗.  

7) Normalizing for each residual of double bootstrap sample, 𝜀�̃�
∗∗ = 𝜀�̂�

∗∗ −
∑ �̂�𝑖

∗∗𝑛
𝑖=1

𝑛
. Suppose 

the normalization vector of double  bootstrap residual  is �̃�∗∗𝑇 = (𝜀1̃
∗∗, ⋯ 𝜀�̃�

∗∗). 

8) Determining the residual vector of the bootstrap-trio sample �̃�∗∗∗𝑇 = (𝜀1̃
∗∗∗, ⋯ , 𝜀�̃�

∗∗∗) 

where 𝜀�̃�
∗∗∗ is the take independently and randomly with returns from vektor �̃�∗∗𝑇 =

(𝜀1̃
∗∗,⋯ 𝜀�̃�

∗∗). 

9) Repeating steps (1) to (8) B times to get the distribution of �̂�(𝜀�̃�
∗∗∗). The distribution 

of �̂�(𝜀�̃�
∗∗∗) is the CDF of the pivot 𝜀�̃�

∗∗∗. 

10) Determining the percentile interval of the residual bootstrap (CI-Residual) at point x0 

using equation (5), 

 �̂�𝑛(𝑥0) ± �̂�(1−𝛼 2⁄ )
−1 (𝜀0̃

∗∗∗), (9) 

where �̂�𝑛(𝑥0)  is prediction of LPR at point x0 with using original data and 

�̂�(1−𝛼 2⁄ )
−1 (𝜀0̃

∗∗∗) =  𝜀0̃
∗∗∗𝐵(1−𝛼 2⁄ )

 is the bootstrap percentile (1-α⁄2)-th of the �̂�(𝜀0̃
∗∗∗) 

distribution. 

 
C. RESULT AND DISCUSSION 

The design of the independent variable x and the dependent variable y in the simulation for 

the two algorithms follows the following conditions. The independent variable (covariate) x is 

an equidistant points design with xmin = 0 and xmax = 2π. The sample size will affect the distance 

from one point to another in the observation domain. The dependent variable (response) y 

comes from the trigonometric function 𝑔(𝑥) = sin 2𝑥  with the addition of an error normally 

distributed with mean μ = 0 and standard deviation σ = 0.2. In addition, we need to choose a 

weight function where researchers generally, such as (Cleveland, 1979), (Cleveland & Grosse, 

1991), and (Cleveland et al., 1988) use the tricube weight function, 

 𝑊(𝑢) = {
(1 − |𝑢|3)3 , untuk |𝑢| < 1      

   0             , untuk |𝑢| ≥ 1 .
 (9) 

The smoothing of the LPR curve uses two parameters, γ as the smoothing parameter and p 

as the degree of LPR. Researchers may choose the magnitude of the γ parameter provided that 

it is not too close to zero and not too close to one or use the optimal search using cross-validation. 

The simulation uses two alternatives to determine smoothing parameters. The first is to select 

the value γ = 0.5, and the second is to use the optimal γ search algorithm in (Mansyur & 

Simamora, 2022). The goal is to analyze whether there is an optimal γ influence. The simulation 

considers low-degree polynomials, namely p = 1 and p = 2. The interval construction uses a 95% 

confidence interval or a significance level of α = 5%. 

Figure 2 is the simulation result for the first algorithm with a sample size of n =100 with the 

number of bootstrap samples B = 1000 and a smoothing parameter γ = 0.5. Figure 2(a) is a 

scatterplot of CI-Paired and LPR-1 where the CI-Paired for the upper boundary (green curve) 

and lower boundary (blue curve) have jagged or wavy surfaces. The surface of the LPR-1 curve 

(curve in black) is very far from the curvature feature of the trigonometric function 

𝑔(𝑥) = sin 2𝑥. The CI-Paired coverage probability of LPR-1 is 0.93, which is close to nominal 

coverage. On the other hand, Figure 2(b), derived from CI-Paired based on LPR-2, shows a 
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smoother surface and its curvature features follow the trigonometric function 𝑔(𝑥) = sin 2𝑥 . 

The area formed by LPR-1 is wider than LPR-2. As a result, the CI-Paired band of LPR-1 is 

broader than that of LPR-2. The CI-Paired coverage probability of LPR-2 is the same as the 

nominal coverage, as shown in Figure 2. 

 
Figure 2. Scatterplot of Paired Bootstrap Percentile Interval and Local Polynomial Regression 

Curve with Bootstrap Number of Samples B = 1000 and γ = 0.5 
 

The literature of (Efron & Tibshirani, 1994) on page 47, reveals that to get an ideal estimator, 

it is necessary to increase the number of bootstrap samples. To achieve that, we need to increase 

the number of bootstrap samples, say B = 10000. Considering that the larger B size will result in 

an expensive simulation is necessary. Figure 3 is a simulation with the same conditions as Figure 

2 but only differs in the number of bootstrap samples. The simulation results show that Figure 

3 gives a smoother curve scatterplot than Figure 2. The curve feature does not change, but the 

probability of coverage of CI-Paired from LPR-2 becomes 0.96, as shown in Figure 3. 

 

 
Figure 3. Scatterplot of Paired Bootstrap Percentile Interval and Local Polynomial Regression 

Curve with Bootstrap Number of Samples B = 10000 and γ = 0.5 
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Using the same sample design and conditions above, we apply the second algorithm to the 

simulation with a Bootstrap B = 10000 sample lot. Figure 4 shows that there is no significant 

difference from the conclusions of the first algorithm.  

 
Figure 4. Scatterplot of Residual Bootstrap Percentile Interval and Local Polynomial Regression 

Curve with Bootstrap Number of Samples B = 10000 and γ = 0.5 
 

The coverage probability of the CI-Residual of LPR-1 is the same as the nominal coverage, 

while the CI-Residual of LPR-2 is 0.96. The simulation applies the search for optimal smoothing 

parameters from the (Mansyur & Simamora, 2022) algorithm, where the sample design 

conditions are the same as above. Mansyur & Simamora (2022) used the cross-validation 

function to get the optimal γ value. The cross-validation function uses the formula, 

 𝐶𝑉(𝛾) =
1

𝑛
∑ {𝑦(𝑥𝑖) − �̂�𝛾

−𝑖(𝑥𝑖)}
2𝑛

𝑖=1 , (10) 

where �̂�𝛼
−𝑖(𝑥𝑖) is the prediction of the LPR at the point xi for which the value of y(xi) is removed 

from original data. The simulation gives γOptimal = 0.09 for LPR-1 with CV(γOptimal) = 0.0499 and 

γOptimal = 0.25 for LPR-2 with CV(γOptimal) = 0.049. Because LPR-2 gives a smaller CV value, we use 

γOptimal = 0.25, as shown in Figure 5. 

 
Figure 5. Scatterplot of Optimal Gamma Search with Sample Size 𝑛 = 100 
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Figure 6 is the simulation result of the paired percentile bootstrap interval algorithm, which 

applies γOptimal = 0.25 for LPR-1 and LPR-2, and the number of bootstrap samples is B = 10000, 

as shown in Figure 6. 

 
Figure 6. Scatterplot of Paired Bootstrap Percentile Interval and Local Polynomial Regression 

Curve with Bootstrap Number of Samples B = 10000 and γOptimal = 0.25 
 

The scatterplot shows the smooth surface of the LPR-1 and LPR-2 curves following the 

curvature feature of the trigonometric function 𝑔(𝑥) = sin 2𝑥. However, the bandwidth of the CI-

Paired from LPR-2 is narrower than that of the LPR-1. The coverage probability of CI-Paired 

from LPR-1 is 0.945, while LPR-2 is 0.93. Figure 7 is a simulation result of the bootstrap residual, 

which shows the same conclusion as Figure 6 but has a different coverage probability. The 

probability of coverage of the CI-Residual from LPR-1 is 0.95, while the LPR-2 is 0.93, as shown 

in Figure 7. 

 
Figure 7. Scatterplot of Residual Bootstrap Percentile Interval and Local Polynomial Regression 

Curve with Bootstrap Number of Samples B = 10000 and γOptimal = 0.25 
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D. CONCLUSION AND SUGGESTIONS 

Nonparametric regression models generally require a large enough sample size to capture 

the curve features. The two new algorithms can work well at relatively small sample sizes. 

However, for the polynomial regression of degree one with the selection of the smoothing 

parameter α = 0.5, it cannot characterize the sample from a particular function. The bandwidth 

resulting from the regression of the first-degree polynomial is wider than the second-degree 

polynomial regression. Still, there is no guarantee that the coverage probability will be the same 

as the nominal coverage. On the other hand, second-degree polynomial regression can 

characterize the behaviour of the data derived from the generation of a particular function, and 

the probability coverage is close to the nominal probability coverage. 

The smoothness of the curve is also affected by the number of bootstrap samples. If the 

number of bootstrap samples is relatively small, the surface of the curve is more jagged and 

wavy, especially for first-degree polynomial regression. At the same time, the second-degree 

polynomial has a smoother curvilinear surface even though the number of bootstrap samples 

is relatively small. The purpose of increasing the number of bootstrap only to smooth the 

surface of the curve does not change the behavior of the curve curve, which is analogous to the 

conclusion of (Gultom et al., 2022). 

The scatterplot shows that applying the optimal smoothing parameter to the local 

polynomial regression model improves performance. Both local polynomial regressions can 

capture curve features based on the behaviour of the sample derived from the generation of a 

particular function. The band thickness of the first-degree polynomial is more proportional 

than that of the second-degree polynomial. The second-degree polynomial regression band 

trend is narrower than the first-degree polynomial regression for both algorithms. The 

probability coverage of the two algorithms is not significantly different. However, the coverage 

probability of the first-degree polynomial is better than that of the second-degree polynomial.  

The simulation results conclude that the bootstrap method can improve the performance 

of complex and sensitive statistics where certain assumptions are not met. Applying the optimal 

smoothing parameter concludes that the two algorithms do not have a significant difference, 

and both local polynomial regressions do not show much difference. It counters the conclusion 

of open-ended questions by (Efron & Tibshirani, 1994), which conclude that paired 

bootstrapping has few disadvantages compared to residual bootstrapping. 

We provide some suggestions for readers who wish to continue this article. Perhaps, the 

reader is interested in determining the BCA bootstrap confidence interval in a local polynomial 

regression model by adapting an existing procedure. Readers may also be interested in 

studying comparative studies, for example, between the bootstrap-t interval method and the 

bootstrap percentile, to determine the best interval between both. Another study that may be 

more interesting is the application of the wild bootstrap method to local polynomial regression 

prediction intervals where heteroscedasticity is present. In addition, readers can examine other 

topics related to the combination of the local polynomial regression concept with the bootstrap 

concept, which is the impact of this article. The priority for further research on bootstrap 

methods is no longer about polynomial degrees or smoothing.  
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