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Research has been carried out on indicator electrodes (1) PVA-Enzyme/PVC-KTpClPB, sensitivity
19,069 mV/decade, detection range 1.10�5–5.10�4 M, detection limit 1.10–5 M. The width of the peak
UV–vis absorbance is narrow (2) PVA-Enzyme/GA-2.9 %/PVC-KTpClPB wide UV–vis absorbance peak
but the absorbance peak decreased, (3) PVA-Enzyme/GA-2.9 %/PVC-KTpClPB-o-NPOE XRD analysis amor-
phous spectral pattern appeared (4) PVA-Enzyme/GA-2.9 %/PPy + H2SO4/PVC-KTpClPB-o-NPOE (5) PVA-
Enzyme/GA-2.9 %/PPy + Sulfonic Acid/PVC-KTpClPB-o-NPOE, amorphous spectrum pattern in (4) and (5)
were greatly reduced for the enzyme variation of 0.6 g in 0.5 mL (50 % water + 50 % alcohol). GA plays a
role in increasing the detection range, o-NPOE forms amorphous, enzyme variations increase the inten-
sity of the XRD spectrum pattern. The method of developing a gradual modification of the indicator elec-
trode membrane by cross-linking GA, o-NPOE, conductive polymer. The best results were obtained at the
indicator electrode PVA-Enzyme/GA-2.9 %/PPy + Sulfonic Acid/PVC-KTpClPB-o-NPOE. Analysis of the lin-
ear curve of the sample EI5-1 with a sensitivity of 41.56 mV/decade, a detection range of 10�4–10�1 M
and a detection limit of 10�4 M, R2 = 97.51 %. The best indicator electrode is EI5-1.
� 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is
an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Modification of the indicator electrode membrane layer started
from (1) PVA-Enzyme/PVC-KTpClPB [1,2] PVA-Enzyme/GA-2.9 %/
PVC-KTpClPB [1–3] PVA-Enzyme/GA-2.9 %/PVC-KTpClPB-o-NPOE,
[4] PVA-Enzyme/GA-2.9 %/PPy + H2SO4/PVC – KTpClPB-o-NPOE,
PVA-Enzyme/GA-2.9 %/PPy + Sulfonic Acid/PVC-KTpClPB-o-NPOE.

Each indicator electrode is given the notation EI1, EI2, EI3, EI4
and EI5. EI1 narrow absorbance spectrum pattern resulting in a
small detection range modified to EI2. EI2 was modified by adding
a GA layer at variations of 2.6 %, 2.9 % and 3.0 % in PVA-Enzyme
from EI1. The GA solution was analyzed by UV–vis. The absorbance
spectrum pattern increases the width of the absorption peak which
affects the detection range (see Fig. 1a). EI2 modification was con-
tinued by adding o-NPOE solution at variations of 61 % and 66 % in
PVC-KTpClPB solution. The PVC-KTpClPB-o-NPOE solution was
analyzed by UV–vis to produce the absorbance spectrum pattern
seen in Fig. 1b. EI2 analysis with XRD produces an amorphous spec-
tral diffraction pattern around the 2theta angle of 20–25 degrees
accompanied by a decrease in energy intensity, see Fig. 2a. The for-
mation of an amorphous spectrum pattern and a decrease in
intensity.

Based on Figs. 1 and 2, the researchers continued to modify the
indicator electrode membrane with a conducting polymer mate-
rial, namely PPy. This PPy can only dissolve in H2SO4 and Sul-
phonic Acid. H2SO4 is soluble at a concentration of 8 M while
sulfonic acid is soluble at a concentration of 1 M. Modification of
the electrode membrane in sequence (1) PVA-Enzyme/GA-2.9 %/P
Py + H2SO4/PVC-KTpClPB-o-NPOE, denoted EI4-1 (2) PVA-Enzym
e/GA-2.9 %/PPy + Sulfonic Acid/PVC-KTpClPB-o-NPOE denoted
EI5-1. Modification procedures EI4-1 and EI5-1, variations in the
number of drops of urease enzyme are one drop and three drops,
the results of the analysis can be seen in Fig. 2b, c and Table 1.
The electrode membrane layer consists of four layers, the first layer
is PVA-Enzyme, the second layer GA 2.9 %, third layer PPy + H2SO4

or PPy + Sulfonic Acid, fourth layer PVC-KTpClPB-o-NPOE 61 %.
Selected o-NPOE 61 % from the UV–vis analysis of Fig. 1. Compared
to Fig. 2b, c and Table 1, the XRD diffraction spectrum pattern anal-
ysis showed a very large decrease in the amorphous spectrum pat-
tern followed by an increase in the crystal spectral pattern (see
Fig. 3).
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Fig. 1. UV–vis analysis of solutions (a) GA 2.6%, 2.9% and 3.0%, (b) PVC-KTpClPB-o-
NPOE 61%, 66%.

Table 1
Analysis of the EDX spectrum pattern of the indicator electrode (a) EI5-1, (b) EI5-3, (c)
EI4-1, (d) EI4-3.

2Theta EI5-1 EI5-3 EI4-1 EI4-3

44.48 140 220 166 236
44.5 164 228 210 216
44.54 204 176 224 172
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This indicator electrode sample was selected to select the best
electrode according to the layer modification which had analyzed
the absorbance spectrum pattern of the PVA-enzyme immobilized
layer; layer two GA crosslinks; PPy conduction polymer triple
layer; and a layer of four o-NPOE plasticizers on PVC-KTpClPB
[3]. After XRD analysis of samples EI5-1, EI5-3, EI4-1, EI4-3, the
best samples were EI5-1 and EI4-1. Both samples were analyzed
by FTIR, cell response potentiometer and linear curve analysis
determining sensitivity, detection range, detection limit and R2.
2. Methods

The method in this study is the biosensor potentiometric
method [4–6] immobilization technique [7] urease enzyme which
analytes urea, using potentimetric cells to determine the feasibility
of urea sensors based on (1) response time of samples EI5-1 and
EI4-1, (2) through linear curve analysis. Materials consist of
1.0 mm diameter tungsten 267 562 99.99 %, PVA [–CH2CHOH-]n,
enzyme EC 3.5.1.5 (Urease) U4002, Glutaraldehyde (GA), PPy,
H2SO4, Sulphonic acid, PVC (CH2CHCl) n, potassium tetrakis 4-
chlorophenyl borate (ClC6H4)4BK, tetrahydrofuran C4H8O, o-
NPOE, KCl. Potentiometer (Keithley 199 DMM, USA), tungsten indi-
Fig. 2. Analysis of the XRD diffraction spectrum pattern of the indicator electrode (a) EI3-
EI4-3.

90
cator electrode (W), Ag/AgCl MF-2052 rE-5B reference electrode in
a microcomputer assembled electrochemical cell (ADI Powerlab
instruments, Australia), magnetic stirrer and flow injection (FIA).
3. Result and discussion

Fig. 1, shows the analysis of the indicator electrode with UV–vis
[8–11] on GA solution [2] and o-NPOE solution in PVC-KTpClPB
(PVC-KTpClPB-o-NPOE) [1,16–18]. The absorbance spectrum pat-
tern with respect to the wavenumber of both shows a widening
of the absorbance spectrum pattern for both GA and PVC-
KTpClPB-o-NPOE. Analysis of Fig. 1a and 1b selected the best
2.9 % GA and PVC-KTpClPB-o-NPOE (o-NPOE 61 %). on the basis
of coated indicator electrodes for the second and fourth layers.

Fig. 2, shows the analysis of the XRD diffraction spectrum pat-
tern [18] for the indicator electrodes (a) EI3-1-4 61 %, EI3-1-4
66 %, EI3-3-4 61 % and EI3-3-4 66 %, (b) EI5-1, EI5-3, (c) EI4-1, EI4-
3. In Fig. 2a the XRD diffraction spectrum pattern from EI3-1-4
61 %, EI3-1-4 66 %, EI3-3-4 61 %, amorphous and crystalline spec-
trum patterns are formed with low intensity. In contrast to
Fig. 2b EI5-1 and EI5-3, 2c EI4-1 and EI4-3 [19], a low amorphous
spectrum pattern and high intensity crystals are formed. So it is
clear that the pattern of the indicator electrode layers EI5-1, EI5-3
and EI4-1, EI4-3, varies in the number of drops of urease enzyme,
one drop and three drops, respectively. The peak height of energy
intensity with respect to the diffraction angle of 2theta can be seen
in Table 1 (a) EI5-1 high intensity 204 (a.u) at a diffraction angle of
44.54 degrees, (b) EI5-3 high intensity 228 (a.u) at a diffraction
angle of 44.5 degrees, (c) EI4-1 high intensity 224 (a.u) at a diffrac-
1–4 61%, EI3-1–4 66%, EI3-3–4 61% and EI3-3–4 66%, (b) EI5-1 and EI5-3, (c) EI4-1and



Fig. 3. SEM morphology and Spectrum pattern of intensity to EDX energy from indicator electrode (a) EI5-1, (b) EI4-1.

Table 2
Weight percentage of indicator electrodes from the EDX spectrum pattern of samples EI5-1 and EI4-1.

Indicator Electrodes Material unn. C norm. C Atom. C Error (1 Sigma)
[wt.%] [wt.%] [at.%] [wt.%]

EI5-1 W 74 L-series 69.07 76.86 29.23 2.28
EI4-1 W 74 L-series 81.95 83.86 32.85 2.65
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Fig. 4. The pattern of the transmittance spectrum against the wavenumber of the indicator electrodes (a) EI5-1, EI5-3, (b) EI4-1, EI4-3.
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tion angle of 44.54 degrees, (d) EI4-3 high intensity 236 (a.u) at a
diffraction angle of 44.48 degrees.

Researchers are still continuing the analysis with SEM-EDX and
FTIR [20] for clear assurance of the material used in the indicator
electrodes (a) EI5-1, (b) EI5-3, (c) EI4-1, (d) EI4-3 as one sample best.
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SEM morphology analysis with 3 Kx magnification at a voltage
of 10 m 20 Kv resulted in a difference in energy intensity of 13.5
cps/keV 1 M sample EI5-1 and energy intensity 14.7 cps/keV 8 M
sample EI4-1. Based on Table 1, it was obtained that the intensity
of XRD analysis increased, Table 2 obtained that the data discrep-



Table 3
Table of transmittance ranges for sample wave numbers (a) EI4-1, (b) EI5-1.

Wavenumber (cm�1) Transmittance (%)

EI4-1 EI4-3 EI5-1 EI5-3

600 60.8895 75.5583 75.9339 48.5782
4000 97.9351 100.9955 102.5625 100.8259

Fig. 5. Response time (a) EI4-1, (b) EI5-1.

Table 4
Linear curve of indicator electrodes EI4-1 and EI5-1.

Indicator electrode membrane layer Sensitivity
mV/decade

Detection range (M) Detection limit (M) R-square (R2)
(%)

EI4-1 43.79 10�3–10�1 10�3 98.83
EI5-1 41.56 10�4–10�1 10�4 97.51

Fig. 6. Analisis kurva linear (1) EI5-1, (b) EI4-1.
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ancy was greater in weight percent EI4-1 than weight percent EI5-
1. While the FTIR analysis in Fig. 4 and Table 3 increases the trans-
mittance for the indicator electrodes EI5-1 and EI5-3, on the con-
trary, the transmittance decreases for the indicator electrodes
EI4-1 and EI4-3. XRD, FTIR and SEM-EDX analysis [6,21,22] then
the best samples are EI5-1 and EI4-1.

After selecting two samples of indicator electrodes EI5-1 and
EI4-1, according to the biosensor poenstiometry method, a poten-
tiometer cell was used to test the feasibility of the indicator elec-
trode response time (Fig. 5). The best response time analysis [6]
Fig. 5a and b were obtained on the EI5-1 sample also supported
by the data in Table 4 that the EI5-1 indicator electrode has a sen-
sitivity of 41.56 mV/decade, a detection range of 10�4–10�1 M,
detection limit is 10�4 M and R2 = 97.51 % [5,23]. The detection
range of EI5-1 is greater than that of EI4-1, the detection range is
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10�3–10�1 M, the detection limit is 10�3 M, while R2 = 98.83 %
[13,25,26].

In electrochemical detection, the signal associated with the
interaction of the analyte is measured through the electrode. Mea-
surements can be made by (a) connecting current and voltage,
namely voltammetric and conductor metric biosensors; (b) current
or voltage with respect to time, i.e., amperometric or potentiomet-
ric; (c) the imaginary versus the real part of the impedance, i.e.,
impedometric; (d) drain current versus line voltage in a FET
biosensor [6], agreement with previously reported analyzes (i.e.,
FTIR, XRD, and SEM) [22] and confirming interactions with added
organic modifiers (see Fig. 6).

The procedure of this study followed (a) Analysis of transmit-
tance, edx, xrd [27], edx, xrd, linear curve, sensitivity and detection
range [28], transmittance, concentration, sensitivity [29–31]; (b)
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The biosensor system [20], namely (1) selectivity, (2) sensitivity,
(3) linearity response, namely the concentration range of the target
analyte to be measured, (4) reproducibility of signal response, sam-
ples having a different concentration. the same analyzed several
times should give the same response, (5) fast response time and
recovery time for reusability of the biosensor system, (6) stability
and operating life; (c) The [7] immobilization technique was devel-
oped based on three important mechanisms, namely (1) physical
adsorption, (2) covalent immobilization, (3) streptavidin–biotin
immobilization. Achieving high sensitivity and selectivity requires
minimization of nonspecific adsorption and stability.
4. Conclusion

As a conclusion from XRD, SEM-EDX and FTIR analysis, response
time and linear curve analysis, the best sample is the EI5-1 indica-
tor electrode with four layer modifications, namely PVA-Enzyme/
GA-2.9 %/PPy + Sulfonic Acid/PVC-KTpClPB-o-NPOE.
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