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ABSTRACT

Teak is woody plants; a member of the Lamiaceae family. Teak is a plant that has a very high
quality timber. Teak has constraints due to low reproductive rates and slow growth of the wood
after entering the reprfffiictive phase. Teak genetic engineering efforts by delaying flowering time
was facing difficulties due to the lack of information about the r@gof genes regulating flowering
identity in teak. Teak has indeterminate inflorescence same as the model plant Arabidopsis. In
Arabidopsis, the role of Terminal Flowering 1 (TFL1) gene as a member of the Floral Meristem
Identity (FMI) in regulating the vegetative to generative transition is by down regulation, so that,
the downstream of the FMI genes up-regulation which resulted in the development towards the
formation of flowers. In teak, this mechanism is not well known. The development of NGS
technology-transeriptome analysis has allowed usto identify specific interest genes from non-model
plant rapidlfZind cheaply relative. To determine the activity of the interest genes in silico can be
undertaken with RNA-seq and QRT-PCR analysis approaches. In this study, it is identified that,
TFL1 genes in teak with NGS transcriptome analysis approach that is annotated with
S. lycopersicum. The TFL1 genes obtained from EST teak derived from vegetative and generative
shoots buds RNA. The TFL1 genes activities on the tissues are done with RNA-seq analysis
approach in order to ob Digitally Gene Expression (DGE) of TFL1. The TFL1 gene activity was
then validated in silico by QRT-PCR analysis. The results of the analysis showed that the TFL1-14
gene activity equivalent to the TFL1 gene activity in the model plant.

Key words: Terminal flowering 1, NGS-transcriptome analysis, DEG, QRT-PCR, EST, floral
meristem identity genes

INTRODUCTION

Teak normally begin flowering at the age of 6-8 years after planting but in the artificial forest
is reported to have early flowering at the age of two years after planting (Norwati et al., 2011;
Khanduri, 2012). At the beginning of flowering teak controlled by genetic and environmental
factors (Palupi el al., 2010). Early flowering in the terminal causes the main axis forking in the first
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Fig. 1: Teak inflorescence, including, (a) Shoots generative apex (Generative Apical Bud/AB),
(b) Lateral generative shoots (Generative Lateral Bud/LB2) and (c) Lateral generative
shoots (Generative Lateral Bud/LLB4)

year of flowering and forking on other shoots occur in the next flowering season (Palupi et al., 2010;
Norwatietal., 2011; Khanduri, 2012). Figure 1 is shows the forking form of teak flowering. Forking
in the major axis at the earliest stage of the infprescence can reduce the growth of timber which
can damage the quality of the wood (Widiyanto et al., 2009; Palupi et al., 2010; Norwati et al., 2011;
Khanduri, 2012).

Flowering reduces vegetative growth rate due to the utilization of energy for the flowering
process (Widivanto el al., 2009). Molecular biology approaches becomes important toimplement to
underst@Zll the function and interaction of genes involved in the flowering process in teak
(Ansari et al., 2012). Understanding the role of each gene in regulating floweringf@h teak will
facilitate the conduct of engineering to improve the quality of teak (Widiyvanto et al., 2009;
Palupi et al., 2010; Norwati et al., 2011; Ansari ef al., 2012).

Flowering in teak can be divided into four sequential stages; (1) Activation of flowering time
genes (flowering time genes) both by environmental and endogenous signals, (2) Activation of
meristem identity genes (meristem identity genes) by some flowering time signals through various
pathways that determine the identity of Fg@rest, (3) The identity of the gene activation floral
organs (flower organ identity genes) by meristem identity genes that specify floral organs and
(4) Activation of genes involved in organ builder of fofigjfloral organ formation (Rosli et al., 2009).
These stages are equivalefgfo the stages that occur in the model plant (Levy and Dean, 1998b).
In the model plant, TFL1 is one of the merigffiin identity gene that play a role in regulating the
other floral meristem identity genes (Larsson ef al., 1998; Levy and Dean, 1998a; Olsen ef al., 2002;
Jack, 2004). Down reg@tion of TFL1 gene will result in up-regulation of downstream genes are
LEFY and AP1 (Olsen et al., 2002; Ordidge et al., 2005). Up regulation of LEY and AP1 were
resulting in AGL4 induced flowering organs (Olsen et al., 2002).
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The question arises, whether the regulation of TFL1 in model plants also occur in teak? This
research willfZitempt to answer that question. NGS-transcriptome analysis performed to identify
genes TFL1 (Liu et al., 2013; Zhang et al., 2013). To further, analyze the gene TFL1 in teak by the
application of phylogenetic analysis. Phylogenetic analysis was performed on all TFL1 genes that
exist in teak. In addition, phylogenetic analysis was also performed on selected TFL1 based on the
lowest E-value compared with TFL1 gene in the other plants that are the result of BLASTX to
NCBI nr protein database. The RNA-seq analysis is performgl) to produce DEG of TFL1 on both
tissues, thffjegetative and generative tissues of teak (Feng et al., 2012; Mutasa-Gottgens et al.,
2012). The QRT-PCR analysis was performed to validate the resultsof DEG, thgfJI'LL1 gene activity
in vegetative and generative tissues in silico (Brunner et al., 2004; Barakat et al., 2012). In this
study, it is identified that TFL1 genes in teak with NGS transcriptome analysis approach that is
annotated with S. lycopersicum.

MATERIALS AND METHODS

Teak tissues materials and RNA isolation: Vegetative and generative shoot buds of teak were
collected from a 12 year old teak plant in Institute of Technology Bandung, Indonesia for RNA
isolation. The following vegetative tissues were sampled from vegetative apical shoots. Generative
tissue@ffere sampled from lateral (nodal) floral-Buds 2nd of generative stage shoots. Both of teak
tissue samples were frozen in liquid nitrogen immediately upon collection and put in dry shipper
for shipping from ITB-Indonesia to Pennsylvanifififitate University (PSU)-USA. Samples were
immediately frozen at -80°C upon arrival at PSU until use. Total RNA Bas obtained by using the
method for RNA isolation protocol that developed by Chang et al. (1993). Frozen tissue were ground
to a fine powder under liquid nitrogen and dispersed in CTAB buffer. Following 2 chloroform
extractions, RNA was precipitated with LiCl,, again extracted with chloroform and precipitated
with ethanol. The resulting RNA pellet was resuspended in 20-100 pl. of DEPC-treated water.
RNA concentration analysis on a Qubit™ fluorometer (www.invitrogen.com/qubit) to show a total
vield of RNA sample (Barakat et al., 2009). The RNA concentrations are 555 and 206 ng uL.~' for
vegetative and generative sample, respectively. The integrity of RNA was assessed with the Agilent
6000 RNA Nano Chip Kit on 2100 Bioanalyzer (Agilent Technologies) (Barakat et al., 2012).

EBired-end cDNA library preparation and MiSeq Illumina sequencing: TEE}l RNA of teak
was extracted from the two tissues using the protocol described previously. The double-stranded
cDNAwas synthesized using the cDNA synthefEjsystem using random hexamer primers (illumina)
according t@hanufacturer’s instructions (Li et al., 2012; Lulin et al., 2012; Fu et al., 2013). The
paired-end library was develof#8l according to the protocol of the paired-end sample preparation
kit (Illumina, USA) (Mizrachi et al., 2010; Lulin et al., 2012; Liu et al., 2013). The resulting library
was sequenced at Penn State University using [llumina MiSeq™ 2000 (Illumina Ine., USA).

Transcript assembly and annotation: The FASEE data file of two sequence computed with
CLCbio for transeript assembly flirategy (Angeloni et al., 2011; Annadurai et al., 2013). The
Bired-end reads were trimmed for quality score and the presence of repeated sequences >50 bp
using the modified Mott-trimming algorithm present (default parameters) in CLCbio (Fu et al.,
2013). We assembled de novo the Illumina-trimmed paired-end reads into transeript contigs using
the software ‘CLC Genomics Workbench’ by setting minimum@#% identity, minimum 40% overlap
and 200 bp as minimum contig length (Liu et al., 2013). The quality of the de novo assembly was
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assessed with a local BLASTN (e-value <10~") alignmenfgZf all the contigs against S. lycopersicum
(www.phytozome.com) using CLCbio workbench (Wang et al., 2010; Zhang et al., 2013). After teak
TFLI1 sequences obtained, then phylogenetic analysis performed on the TFL1-14 sequences to
determine the TFL1 gene diversity that exist in teak. Phylogenetic analysis was also conducted to
determine the teak TFLI1-14 position compared with TFL1 of the other plant using BLASTX
Ef:lysis approach to NCBI nr protein database. Phylogenetic analysis is performed using the
ClustalW2 (http://www ebi.ac.uk/) (Larkin et al., 2007).

RNA-seq analysis: Comparison of digitally gene expression (DEG-seq) between TFL1 in vegetative
and generative tissues was @@e using RNA-seq analysis software test developed by CLCbio
genomic work bench (Eveland et al., 2010; Guoet al., 2011; Barakat et al., 2012). DEG-seq analysis
was used to idefigdfy TFL1 genes in transcript abundance because it integrates several statistical
methods (Feng ef al., 2012; Huang et al., 2012). The number of reads per contig for eachPl'L.1 gene
was compared between vegetative stage and generative tissuesin teak separately (Guo et al., 2011;
Pestana-Calsa et al., 2012; Sweetman et al., 2012). RNA-seq employs a random sampling model
based on the read count [fiyegetative and generative tissues libraries and performs a hypothesis
tesffased on that model (Mutasa-Gottgens ef al., 2012). Further analysis of the DEG results should
be validated by QRT-PCR Jian et al. (2008), Barakat et al. (2012) and Zhang et al. (2013).
Validation tests of TFL1 by quantitative real-time PCR: Quantitative real-time RT-PCR
(QRT-PCR) tests were conducted to determine the extent to which the number of EST reads per
gene obtaffEd by shotgun sequencing accurately reflected transcript levels in the source tissues
(Brunner et al., 2004; Jian et al., 2008). The QRT-PCR estimates of transcript abundance were
conducted on RNA from v@Etative and generative bud tissues from teak (Heid et al., 1996). The
QRT-PCRs were prepared using the SYBR Green Master Mix kit (Applied Biosystems) and run in
an Applied Biorad X 96 Fast Real-Time PCR system with default parameters (Livak and
Schmittgen, 2001). Primers were designed using Primer3 software (Koressaar and Remm, 2007).
The parameters used are the default parameters of Primer3 (Untergasser el al gg012). The
parameters are set as follows: Number to return = 5, max stability = 9, max repeat
mispriming = 12, pair max repeat mispriming = 24, max template mispriming = 12 and pair max
template mispriming = 24. Parameters for thermodynamic also using the default parameters
consisting of primer size optimum = 20 (18-27), primer tmfptimum = 60 (57-63), max tm
difference = 100%, primer gc minimum 20 and maksimum 80 (Http:/bioinfo.ut .ee/pringgy3-0.4.0/
input-help.htm) (Koressaar and Remm, 2007; Untergasseret al., 2012). A gene encoding 18S rRNA
was use@@ an endogenous standard to normalize template quantity.

The QRT-PCR analyses were performed to confirm the gBpression of TFL1 using in silico
expression analysis (Barakat et al., 2012). Foreach TFL1 gene, three biological replicates and three
technical reffates were performed. Statistical analyses used to estimate the significance of the
differences (Livak and Schmittgen, 2001; Brunner et al., 2004; Barakat et al., 2012).

RESULTS

NGS-transcriptome analysis of vegetative and generative teak shoots: The RNA isolation
was using a modified method from Chang et al. (1993) performed to isolate RNA from teak tissue
of vegetative and generative shoots buds. The RNA was checked for the quality using qubits and
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Table 1: Summary statistics of sequencing and de novo assembly results

Term Value
Input sequence

Vegetative tissue 3,701,878
Generative tissue 3,778,316
Total bases 42,435,728
Contigs nfP3r 87,365
Minimum length of contigs 225
Maximum length of contigs 4,361
Average length of contigs 486

N75 359

NBO 498

N25 805

bioanalyzer. Only RNA with best RNAghtegrity Number (RIN) values further analyzed using
Mumina NGS-Miseq platform (Collins et al., 2008; Li ef al., 2012; Liu et al., 2013). The [llumina
Miseq sequencing platform generates 3,701,878 sequences for vegetative tissues and 3,778,316
sequences for generativeff§sues. These sequences were further analyzed, using CLC-bio workbench
for trimming analysis to determine the quality of the sequence (Collins et al., 2008; Wu et al., 2010).
The trimming results showed that the sequence has goodfhality. The following analysis also using
CLC-bio workbench is de novo assembly (Annadurai et al., 2013). The results of the de novo
assembly are 87.365 contigs those resulted from the combination of vegetative and genef@ive
tissue sequences. Contigs quality was also tested by trimming using CLC-bio workbench (Wu et al.,
2010; Barakat et al., 2012; Annadurai ef al., 2013). The trimming of the contigs result can be seen
in Table 1.

S. lveopersicum was used for contigs annotation. Results from BLASTN and annotations of teak
contigs against S. lycopersicum cds database which produces 14 contigs hit clicking TFL1 gene.
All TFL1 contigs then we call TFLL1 unigene. The BLASTN results can be seen in Table 2. The
TFL1 unigene produced had the different E-value and identity (%). It is decided to choose TFL1
for further analysis because it has the lowest E-value (Huang et al., 2012; Barakat elm.. 2012).
TFL1 unigenes then further analyzed by phylogenetic analysis using the ClustalW2
(http://www.ebi.ac.uk/) (Larkin et al., 2007).

TFL1 in teak: The TFLI genes hit by fourteen contigs. The range of number of hits is from
6-529 and the E-value range is 1.376E-07 up to 3.538. The greatest identities of the fourteenth
TFLI genes are entirely 100%. The range of greatest hits with a length is from 16-32. Greatest bit
scores ranged 32.21-55.999 (Table 2). Teak-D-1.B2_12_1.001_R1_001 (paired) contig 81549, TFL1-14
chosen as gene for further analysis because it has the lowest E-value is 1.376E-07. Phylogenetic
analysis results showed that there were ten groups of TFL1 in teak (Fig. 2).

It ean be classified into three major groups of genes TFL1 namely: Major group I consists of two
minor groups, TFL1-1 and TFLI1-7 clustered in first minor group while TFL1-4 and TFL1-10
clustered in the second minor group and TFL1-2 and TFL1-11 clustered in the third minor group.
Major group I1 consists of four minor groups, TFL1-3 and TFL1-12 clustered in the 1st minor group.
The second minor group consists of only one member i.e., TFL1-8. TFL1-5 and TFL1-14 clustered
in the 3rd minor group, while TFL1-9 being the only member of the 4th minor group of major group
I1. Major group III consists of only a minor group consisting of TFL1-6 and TFL1-13. TFL1-14
selection based only on the lowest E-value, if we observe the phylogenetic analysis, there is no
significant difference from TFL1-14 compared with other TFLI.
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Fig. 2: Phylogram of teak TFL1 genes results from BLASTN to S. lycopersicum CDS database
(http:/Awww .phytozome.com)

The other phylogenetic analysis results of TFL1 gene teak against the NCBI nr protein
sequence database (FFig. 3) showed that TFIgJl4 in one group with TFL1-14 is one group with TFL1
of Arabidopsis and TFL1 of sunflowers. For the analysis of gene expression of TFL1 in the
vegetative to generative transition of teak, we compare the results of TFL1-14 DEG with
L1-14 QRT-PCR results. Based on these considerations, we design primer of TFLI1-14
using Primer3 software (Koressaar and Remm, 2007; Untergasser et al., 2012). The primer
quence of TFL1-14 is Left Primer (L): TTCTCTTTACGGGCTTCGA, Right Primer (R):
CCGACGTGACAGCTTTTGT and L: AATTGTTGGTCTTCAACGAGGAA, R:
AAAGGGCAGGGACGTAGTCAA for 18S. The 18S is used as a reference gene to be used for the
QRT-PCR analysis.

Expression profiles TFL1-14 in the regulation of vegetative to generative transition on
teak: TFL1-14 gene level expression results of the DEG and QRT-PCR analysis can be seen in
Fig. €F)These results of DEG need to be confirmed in vegetative tissues and teak generative tissue
with QRT-PCR analysis (Brunner et al., 2004; Jian et al., 2008; Guenin et al., 2009; Howe et al.,
2013; Barakat et al., 2012). Expression profile results of QRT-PCR analysis of TFL1-14 gene in the
generative and vegetative tissue of teak can be seen in Fig. 4b. Figure 4b shows that the TFL1-14
gene expression profile results of QRT-PCR equivalent to the expression profile results of DEG
analysis (Guenin ef al., 2009). The TFL1-14 expression profiles in down regulation during the
formation of floral organs (Fig. 4a).

DISCUSSION

Flower formation is a erucial stage of plant development, because it determines the maturity
of the plant (Torti et al., 2012; Blazquez, 2000). Flowering plants that have been successful in
generating flowers indicated that the plant is ready to produce offspring (Putterill et al., 2004). The
next stage after the forming of flower is the formation of seeds. In teak, flower formation occurs
after the age of 6-8 years (Orwa et al., 2009; Ansari et al., 2012). This is a long time and it is a
serious concern in the development of teak. Teak is very low reproductive rate if compared tofiggher
woody plants that live in the same habitat. Low reproductive rate is also a serious concern in the
development of teak (Orwa et al., 2009; Lyngdoh et al., 2010). In teak wood production, the
reproductive stage of teak is known to inhibit the growth of wood, so that, the teak will have a long
time to harvest (Widiyanto et al., 2009).
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AtTFL1 21120563264 |2b|AFA66812. 1| Arabidopsis thaliana Arabidapsis thaliana
terminal flower 1 gene, complete cds

StTFL1-1 21|B3583662(gb[DQ307621.1] Sclanmm tuberosum Solamim tuberosum
terminal flower 1 protein mRNA. plete cds

StTFL1-2 21/368214624|rel]NM_001288549.1| Solamim inberosum Solanun therosum
terminal flower 1 protein (LOC102377915), mRNA

DITFL1 21635543044 |gb|KI480957. 1] Dimocarpus longan Dimocarpus longan
cultivar Honghezi terminal flower 1 (TFL 1) gene, complete eds

VrIFL1 21[295148808|gh|GUI4TR26.1| I'itis riparia Vitis riparia
terminal flower 1 (TFL1) gene. complete eds

TeCONSTANS-lke | 2i1/662170386/gb|KF425309.1| Tectona grandis tectona grandis
CONSTANS-like protein @ mRNA. complete cds

ZmTFLI 21[115498266|2b(DO923416. 1| Zea mays Lea mays
terminal flower 1| mRNA. complete eds

AhTFL1 21399207838 |gb| JQOT1308.1| Arachis hvpogaea Arachis hypogaea
terminal flower | (TFL1) gene. complete eds

RcTFL1 21| 3858664 30|gh| JOO08813.1| Rosa chinensis Rosa chinensis

cultivar Old Blush terminal flower 1 mRNA. complete eds

BoTFL1 £1/335335969|gb HM641253.1 husa ol dlamii Bambusa oldhamii
terminal flower 1 (TFL1) mR] bmplete cds N

HaTFL1 211309257245 |gb|GU985601. 1| Heltanthus anmis Helianthus annis
bio-matenal PI 578872 terminal flower 1 (TFL1) gene. complete cds
AILHY 21334182204 refINM_001197953. 1| Arabidopsis thaliana Arabidopsis thaliana

protein LHY mRNA, complete cds

Fig. 3: Phylogram of teak TFL.1-14 genes results from BLASTX to nr protein sequence database
NCBI

Problems in teak flowering become important to learn because it is associated with the
development of teak cultivation (Rosli et al., 2009; Widiyanto et al., 2009). Flowering mechanism
that occurs in teak igfijill very limited information (Widiyanto et al., 2009). In previous reports, we
have learned about the role of LIgfjgenes in regulating the transition of vegetative to generative
of teak. In this rep@f§ we will be reported the role of other floral meristem identity genes, namely
EHL1. The TFL1 role in regulating the teak transition of vegetative to generative will add
information about the flowering mechanism of teak at the molecular level. This TFL1 expression
profiles research on teak is expected to provide additional information on the mechanism of teak
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Fig.4(a-b): Expressions (a) Level and (b) Profile TFLL1-14 gene in the regulation of generative organ
formation from vegetative shoots to generative shoot buds

flowering. In this study, the approach used NGS-transcriptome analysis to identify TFLI1 genes in
teak. The results of NGS-transcriptome analysis of the teak sequences obtained fourteen kinds
TEFLI1 unigene which is annotated with S. lycopersicum (Olmstead, 2005; Lyngdoh et al., 2010).

In Arabidopsis model plant, there are 14 TFL1 alleles that have been identified ((ABRC)
www.arabidopsis.org) (Ordidge et al., 2005). Although each allele has its own efffession profile but
the general profile of TFL1 expression is a gene that encodes a protein, is express§gjin the
cytoplasm (Ordidge et al., 2005; Liu et al., 2013). This gene controls the inflorescence meristem
identity. This gene is involved in the initiation of flowering. These geneffave an orthologous in
Antirrhinum i.e., CENTRORADIALIS gene (CEN) (Jack, 2004; Putterill et al., 2004). This gene is
involved in protein trafficking to the protein storage in the vacuole (Olsen et al., 2002). Genetic
studies indicate that TFL1 acts in part by repressing the expression of IfAFY in the inflorescence
strong conservation in the number, positioning and meristems (Olsen et al., 2002; Ordidge et al.,
2005). Thus, down regulation of TFL1 leads to LFY expression and is one of the first steps in the
genetic cascade that leads to flower formation (Olsen et al., 2002).

In teak, flowering was also induced by environmental and endogenous factors (Rosli et al., 2009;
Palupi ef al., 2010). Both of these factors interact to induce flowering. In the m§f§pl plant which is
induced LFY gene as a floral meristem identity (William et al., 2004; Widiyanto et al., 2009). In this
study we see the expression of teak TFL1-14 unigene in vegetative and generative shoot buds to
induce flowering. The results of DEG and QRT-PCR gene expression analysis showed that TFL1-14
maintained in the down regulation trend in the regulation of teak floral organ formation. These
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results indicate that the TFL1-14 expression profiles equivalent to the general pattern of TFL1
expression in the model plant. Based on the results we can assume that teak TFL1-14 is equivalent
with model but we have more than one kind of TFL1. We need further analysis to identify other
TFL1 unigene existing in the teak EST database that resulted by NGS-transeriptome analysis were
performed. In order to further identify TFL1-14 genesin teak, we require advanced gene expression
analysis, including in situ hybridization, gene over-expressiofifind gene silencing.

However, this result is an initial study of TFL1 the other of the floral meristem identity gene
[Epression in the teak flowering regulation. The authors hope that the results of this study may
provide a basis for further research in understanding the regulatory mechanisms of vegetative to
generative transition in teak.

CONCLUSION

This study shows that (1) De novo assembly result on the outcome of NGS-Transcriptome
Analysis from teak vegetative and generative shoot buds sequence produce 87.365 contigs,
(2) Identification and annotations results with S. lycopersicum CDS database obtained results 14
different unigene TFL1 in teak, (3) TFL1-14 has the smallest value of the E-value was analyzed
further by DEG analysis and QRT-PCR analysis, (4) DEG expression profile results of TFL1-14
in equivalent with QRT-PCR results, (5) TFL1-14 has equivalent activity to the general TFL1
expression profile in the model plant and (6) Advanced rese@h is needed to string up the
understanding about the teak TFLL1 gene. However, the results of this study are expected to provide
the basis for research on the mechanism of flowering teak.
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