DAFTAR GAMBAR

		Halaman
Gambar 2.1	Hubungan Absorpsi dan Emisi transisi cahaya dalam sistem	11
Gambar 2.2	Lantanida dalam Sistem Periodik Unsur	11
Gambar 2.3	Struktur Tingkat Energi Erbium	12
Gambar 2.4	Spektrum absorpsi yang terukur secara eksperimen Er ³⁺ yang didadahkan pada fiber germane-alumino-silica	12
Gambar 2.5	Alat Uji XRD	15
Gambar 2.6	Spektrum absorpsi dari gelas Borat didoping Er3+ dengan rentang 400-1800 nm	16
Gambar 2.7	Alat Uji UV-VIS NIR Shimadzu 3600	16
Gambar 2.8	Alat Uji Luminescence NIR	18
Gambar 2.9	Bentuk diagram Interferometer Michelson yang digunakan pada FTIR	19
Gambar 2.10	Spektrum FTIR dari gelas natrium fosfat yang didoping erbium dengan berbagai variasi Er_2O_3 : (a) $x = 1,0mo1\%$, (b) $x = 2,0mo1\%$ (c) $x = 4,0mo1\%$ dan (d) $x = 6,0mo1\%$	20
Gambar 2.11	(a) Abbe Refractometer untuk mengukur indeks bias material gelas (b) tempilan pembacaan skala indeks bias	21
Gambar 3.1	Proses pembuatan gelas Er^{3+} dengan metode <i>melt-</i> <i>quenching</i>	29
Gambar 3.2	Electrical glass melting furnaces with oxidation, reduction and gas flow system	29
Gambar 3 3	Skema dasar difraksi sinar-X	30
Gambar 3.4	Spektrum IR sampel gelas dengan rentang gelombang 1800-4000cm ⁻¹	31
Gambar 3 5	Perangkat Alat Uii FTIR	32
Gambar 3 6	Neraca Digital A&D HR-200	33
Gambar 3.7	(a) Rangkaian Alat Uji <i>Abbe Refractometer</i> ATAGO-3T (b) Cairan <i>mono-bromonaphtalene</i>	34
Gambar 3.8	Rentang panjang gelombang sebagai daerah kerja detektor yang ada pada <i>spectrophotometer</i> UV-3600 (Shimadzu)	35
Gambar 3.9	Metode Tauc Plot yang digunakan untuk menentukan energi celah pita optik	36
Gambar 3.10	Perangkat Alat Uji NIR Luminescence Spectrometer tipe PTL Quantum Master-300	36
Gambar 3 11	Pengukuran NIR Luminescence (Chantima N	37
UN	Kaewkhao, J., 2017) (a) SPektrum emisi gelas tereksitasi pada 521 nm; (b) intensitas NIR emission ion Er^{3+}	0
Gambar 4.1	Gelas Er <i>undoped</i> 0% mol	40
Gambar 4.2	Material gelas (70-x)P ₂ O ₅ -10Bi ₂ O ₃ -10Na ₂ O-10Gd ₂ O ₃ -	41
	xEr_2O_3 sebelum proses pembentukan ukuran dan penghalusan	• *
Gambar 4.3	Medium gelas setelah dilakukan proses pembentukan ukuran dan penghalusan	42

Gambar 4.4	Kaca hasil fabrikasi (Susanto,2012) komposisi yang digunakan adalah 55TeO ₅ -2Bi ₂ O ₃ -(43-x)ZnO-xEr ₂ O ₃	42
Gambar 4.5	Grafik kerapatan dan volume molar material gelas Er:Fosfat	44
Gambar 4.6	Spektrum XRD material gelas Er:Fosfat dengan konsentrasi 3% mol	46
Gambar 4.7	Spektrum XRD material gelas (Maheswari et al., 2018)	47
Gambar 4.8	Spektrum FTIR material gelas Er:Fosfat	49
Gambar 4.9	Spektrum penularan FTIR dari Er didoping pada gelas fluoro fosfat (Babu et al., 2015)	50
Gambar 4.10	Spektrum serapan kaca hasil pengukuran dengan UV-VIS NIR Shimadzu 3600	51
Gambar 4.11	Spektrum penyerapan optik BSGdCaEr 0,5 %mol (Kesavulu et al., 2016)	52
Gambar 4.12	Celah pita energi tidak langsung (<i>indirect bandgap</i>) gelas Er:Fosfat	57
Gambar 4.13	Celah pita energi langsung (direct bandgap) gelas Er:Fosfat	58
Gambar 4.14	Spektrum eksitasi gelas Er5 dengan konsentrasi 3 % mol	59
Gambar 4.15	Spektrum absorbsi gelas BaBPEr untuk (a) semua konsentrasi dan (b) 1 % mol Er ₂ O ₃ (Chanthima & Kaewkhao, 2017)	60
Gambar 4.16	Spektrum emisi gelas Er:Fosfat	61
Gambar 4.17	Spektrum emisi gelas BaBPEr dengan puncak eksitasi 521 nm (Chanthima & Kaewkhao, 2017)	62

