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Department of Mathematics, State University of Medan, Indonesia. *Email:
zul.amry@gmail.com ABSTRACT This paper presents a Bayesian approach to find the
Bayesian model for the point forecast of ARMA model under normal-gamma prior
assumption with quadratic loss function in the form of mathematical expression.

The conditional posterior predictive density is obtained from the combination of the
posterior under normal-gamma prior with the conditional predictive density. The
marginal conditional posterior predictive density is obtained by integrating the
conditional posterior predictive density, whereas the point forecast is derived from the
marginal conditional posterior predictive density. Furthermore, the forecasting model is
applied to inflation data and compare to traditional method.

The results show that the Bayesian forecasting is better than the traditional forecasting.
Keywords: ARMA Model, Bayes Theorem, Inflation, Normal-gamma Prior JEL
Classifications: C13, C15, C22 1. INTRODUCTION Bayes theorem calculates the posterior
distribution as proportion to the product of a prior distribution and the likelihood
function.

The prior distribution is a probability model describing the knowledge about the
parameters before observing the currently by the available data. Main idea of Bayesian
forecasting is the predictive distribution of the future given the fast data follows directly
from the joint probabilistic model. The predictive distribution is derived from the



sampling predictive density, weighted by the posterior distribution (Bijak, 2010).

This is to and (2015) the problem Bayesian for ARMA under prior. papers to research
Amry Fan and Yao (2008), Kleibergen and Hoek (1996), and Uturbey (2006) also
discussed the Bayesian analysis for ARMA model. This paper focuses to find the
mathematical expression of the Bayes estimator prior with loss and compare traditional
method. 2.

MATERIALS AND METHODS The materials in this paper are some theories in
mathematics and integration, and the univariate student’s t-distribution and inflation
data. The method is study of literatures by applying the Bayesian analysis under
normal-gamma prior assumption. ARMA (p, q) model (Liu, 1995) is defined by: yy ee ti ti
jtjjgtip=++--==7?727?211(1) Where {et} i i d normal random variables with et ~
N(O,t -1), t>0 and unknown, f i and ? j are parameters.

The Bayes theorem (Ramachandran and Tsokos, 2009) stated as: p(y|x ) a p(x|y ) py (y)
(2) Where p(y|x ) is posterior distribution, p(x]y ) is likelihood function and py(y ) is prior
distribution. A quantity, is to a distribution n degrees of freedom with mode p and scale
parameter t>0 if it has the probability density function (Pole et al.,

2 pt u t (3) International Journal of Economics and Financial Issues | Vol 8 ¢ Issue 5 ¢
2018 97 The mean is E (X ) p and the varianceisVarXnn () =-?2,ifn >2 In the
Bayesian approach the point forecast determined based the estimator.

to & (2006), is an of, a loss is real-valued function: () 2 *" (4) For quadratic function,
Bayes is mean of the posterior distribution (DeGroot, 2004). 3. RESULTS The
k-step-ahead point forecast of yn+k, is defined by: ? yK Ey Snkn () (|) * = + (5) Where

Syyynnk*(,)=+-121%eyyettitiipitjjp=---=-=77ff 11 Based on the
equation (1) can be obtained residuals: ey ye ttitijtjjqip=----==777?711(6) By
conditioning the first p observations and letting ep=ep-1=...= er = 0, where r = min(0,

p+1-q), one may approximate by Box & Jenkins, the likelihood function for parameters ?
=(?1,?22,.72p,?21,?72,.,7q)and tbasedis: LSyyennkptitijtjjgip(|)exp*()

att??--?22 4----==2212112f22227222202022°2°20°20°2 020 =+ +-
?211tp nk (7) The equation (7) can be expressed as: LSyy BBnnkptTttTttpn(|)
eXpr*)ttt???--+()+----=++122112122kktpnktpnk-=+ +-=++-27?7

112 ... ... e eeeeeeeppnkpgpgnkg-+-+-+-+--22222222222°22727



0121_Whereeyyetppnttitijtjjqiip=--=++--==2?2___.._ff?2,,1211et,
et-1,...et-qgcanbeobtainedvia:eyBttTt=--?2?10Q)Where___...___ ..._77277=,
. ) fE£12 12 pg From the likelihood function in equation (8) can be obtained: yB yB yB
yByyyttppppnknktpnkppp-+++++-=++-+-=++=21121211112( ... »
DGunn????yeeeyyyyeeepppgpppppp 11121212 -+ - ++ ++ - + qq nk nk nk
nkpnknkgTyyyyeeUX) (,,,)++ =++-+-—--+-+--22221210222?TttpnkTp
TpTnkBBBB-=++-++-()=0+(0++(0?2121121222127?2722,?222227727?pq

pn kn kn kg TTeee UU,, ,, () ? ?? International Journal of Economics and Financial Issues
| Vol 8 « Issue 5 « 2018 98 Such that the likelihood function in equation (8) can be
expressed as: LSeyUXUUnnkptTT TTtpnk?7?2?2? |exp()()* (0?2207 -+ +-- =+

+-2eyVWnkptTTtpnk()exp12211227?7??2?22?27?(10) Where UT X0 =V and
UuT = W 3.1.

Posterior Distribution According to Broemeling and Shaarawy’s suggestion (1988), the
normal-gamma prior of parameters ? and tis: 2t 2t 2t tp t yu ( )(|) .() ex p()() ??2?? = =

QQ QQ (11) Where 1 ~ N -1,), 1 ~ GAM Q a definite matrix of the order (p + q), a and
B are parameters.

By applying the Bayes theorem to equation (10) and (11), the posterior distribution of ?
andt-nis:pttt??2?? |exp*-+--0=++-(0)?-+2?222112121122SyVWn

Ttpnk+=++ ==+ +-22112puuB3.2.

Conditional Posterior Predictive Density Based on ey ye ttitijtjjqip =----==7?7?7?1



2 If expressed inyt: fySyyetntitijtjjgip(.,)exp*?tptt?? -—----===()---2?7?

2211222expyByBnk Tnknk Tnk???2-+-222722?2?22?2 44+ -+272122122exp
yR By nk TT nk nk ?? ? (14) Where Bn + k-1yn + k-1, yn + k-2,...yn + k-p, en + k-1,....en
+ k-2,...en + k-qRB B nk nk T =? +- +- 11 Based on the equation (12) and (14) can be
obtained the conditional posterior predictive density of Yn+k: fy SS fy S pn kn nn kn nk
PU )L )+ -+ -+--+20222tpttt 1111222128t Ppp()+---+-++727
22NN P TTTPVQVQKexp () () 7?77 2ttttal12211222exp -+ -

conditional posterior predictive density of Yn+k using norma gamma prioris: ? () ? - -+
+-+--+()++-fySGVQpnknnkpp TT|,,exp (* ?2?2?2?2ttta 1121212y +-

?? (15) Where G =P + R 3.3.

Marginal Conditional Posterior Predictive The marginal conditional posterior predictive
density of Yn+k can be obtained by integrating the conditional posterior predictive
density in equation (15): density in equation (15): fy Sf yS dd pn kn pn kn nk pp ++ - -8
88+--+0+0=222|(|,)*™??tttal1012++--888+-++-?7--++-++1210
12expQ(()tpp?2?22TTnknkTnkGVQBYyVQB1121212TnknknkppyyKdd



?7?2?2?2112()VQBydnknku tt (16) By applying the formula of Gamma distribution
from the equation (16) can be obtained: fy S yK VQ By GV QB pn kn nk nk nk T n + + +-

ure2:Tablel:ValueofparametersandAI|CMODELEQEQEQ AIC ARMA
(0,1) - - 0.4058 335.00 ARMA (1,0) 0.3544 - - 340.84 ARMA (1,1) 0.0686 - 0.3528 331.79
ARMA (2,0) 0.4317 -0.2129 - 333.46 ARMA (2,1) 0.5883 -0.2712 -0.1625 334.96 Table 2:
Comparison of point forecast between Bayesian with traditional forecasting k Factual
data Result of forecasting: EQ Bayesian Traditional 1 0.51 0.443232000 0.42096670 2
-0.09 0.006368232 0.02118361 3 0.19 0.262402900 0.02374863 4 -0.45 0.538752700
-0.02603840 5 0.24 0.175542000 0.01485990 6 0.66 0.369192000 0.20172880 7 0.69
0.455384000 0.20085360 8 -0.02 0.027196330 0.04167132 9 0.22 0.235994600
0.27691080 10 0.14 0.123299330 0.08616260 11 0.47 0.365324000 0.27197930 12 0.42
0.469548070 0.39836110 Fig ure 4: Plot of factual data (red), Bayesian (green) and
traditional (blue) Fig ure 3: Plot of PACF International Journal of Economics and Financial

-+--+----Themarginalconditionalposteriorpredictivedensi
ty o fYn+k is a univariate student’s t-distribution on (n + k -( p +2a) degrees of
freedom with mode 2?2 =- )+ ) +--+--+--1T111111BGBBGVQnNkTnknkT() 3
4.

PointForecastForquadratic loss function, the point forecast of Yn+k is the
posterior mean of the marginal conditional posterior predictive, that is: EY SB GB BG VQ
nknnkTnknkT++--+--4+--0=-0+0]0*11111117?2(17) 4. APPLICATION
The results of point forecast are applied to a set of time series data that been by ARMA
using based on data from 1 to 192. 4.1.



Data, Stationarity, Identification, and Model Selection Data 204 y, monthly in from
January 2000 to December 2016 is displayed in Fig ure 1. Plot of ACF in Figure 2 in the
form of damped sine wave, indicates that the time series data is stationary. Plot ACF in
Figure 2 is disconnected after lag plot PACF Figure 3 is disconnected after second lag,
these indicate that the appropriate model for data ARMA(2,1).

The the of and value is presented as Table 1. The smallest AIC value in Table 1is 331.79
on ARMA(1,1) model, it means the suitable model for the data is ARMA(1,1) model. In
Yt, its model is written: Yt = 8530606=0.3335 Yt -1 + et (18) 4.2. Comparison to
Traditional Method The comparison of point forecast between Bayesian forecasting in
equation equation (17) with traditional forecasting in equation (18) is presented in the
Table 2. Columns 2 through 4 containing the factual data, result of Bayesian forecasting,
and result of traditional forecasting.

The comparison of forecast accuracy between Bayesian method and traditional method
is presented in the Table 3. Rows 2 through 5 containing the RMSE, MAE, MAPE and
U-Statistics. The results show that the forecast accuracy value of the Bayesian method is
smaller than the traditional method, so in this case it is concluded that the forecast
accuracy for the Bayesian forecasting is better than the traditional forecasting.

The comparison of descriptive statistics between the Bayesian method and the
traditional method is presented in the Table 4. Columns 2 through mean, third quartile
(Q3), maximum (Max), and standard deviation for factual 192 data the of forecasting for
the 12 steps ahead, and 192 factual data and the result of traditional forecasting for the
12 steps ahead.

Plot of factual data, Bayesian and traditional forecasting for the 12 steps ahead is
displayed in Figure 4, shows that the plot of factual data is more varied to the plot of
Bayesian than the traditional forecasting. 5. CONCLUSION of the point forecast for
Bayesian forecasting under normal- gamma prior. The conditional posterior predictive
density Table 3: Comparison of forecast accuracy Forecast accuracy Bayesian Traditional
RMSE 0.12476883 0.2545024 MAE 0.09569079 0.1962556 MAPE 47.6807038 81.4006722
U-statistics 0.16897685 0.4092601 Table 4: Comparison of descriptive statistics Data
Min.

Q1 Median Mean Q3 Max SD Factual 1-204 140 1.14 0.5 0.55 0.9 3.3 0.589 Factual
1-192, Bayesian 193-204 140 1.13 0.5 0.55 0.9 3.3 0.590 Factual 1-192 Trad. 193-204
140 1.12 0.4 0.54 0.9 3.3 0.588 International Journal of Economics and Financial Issues |
Vol 8 « Issue 5 « 2018 102 is obtained by multiplying the normal-gamma prior with the
conditional predictive density.



The marginal conditional posterior predictive density is obtained by integrating the
conditional posterior predictive density to paramaters, whereas the point forecast is
derived based on the mean of marginal conditional posterior predictive density that has
the univariate The computational results show that the forecast accuracy value of
Bayesian forecasting is smaller than the traditional forecasting, while the values of
descriptive statistics show that the Bayesian forecasting is closer to the factual data than
the traditional forecasting, it indicates that the Bayesian forecasting is better than the
traditional forecasting. REFERENCES Amry, Z.
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