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Abstract A digraph is primitive provided there is a positive integer k such that for each 

pair of vertices u and v there exist walks of length k from u to v and from v to u . The 

scrambling index of a primitive digraph D is the smallest positive integer k such that for 

each pair of vertices u and v in D there is a vertex w such that there exist walks of length 

k from u to w and from v to w . A two-colored digraph is a digraph each of whose arc is 

colored by red or blue.  

 

In this paper we generalize the notion of scrambling index of a primitive digraph to that 

of two-colored digraph. We de?ne the scrambling index of a two-colored digraph D (2) 

to be the smallest positive integer h + l over all pairs of nonnegative integers (h,ÿl) such 

that for each pair of distinct vertices u and v there is a vertex w with the property that 

there are walks form u to w and from v to w consisting of h red arcs and l blue arcs. For 

two-colored Wielandt digraph on n = 4 vertices we show the scrambling index lies on 

the interval [ n 2 - 3n +ÿ3 ,ÿn 2 - 2n +ÿ2] .  

 

Keywords Two-colored digraph, Primitive digraph, Scrambling Index, Wielandt digraph 1 

Introduction By a nonnegative integer vector x = 0 we meant a vector each of whose 

entry is a nonnegative integer. Therefore, the notion z = x means that z - x = 0. Let D be 

a digraph. A walk of length k from u to v is a sequence of arcs of the form u = v 0 ? v 1 

,ÿv 1 ? v 2 ,ÿ.ÿ.ÿ.ÿ,ÿv k -1 ? v k = v .  



 

We use the notation u k ? v walk to represent a walk of length k from u to v . A u ? v 

path is a walk with distinct vertices except possibly u = v . A cycle is a u ? v path with u = 

v . A digraph D is strongly con- nected if for each pair of vertices u and v there is a u ? v 

walk and a v ? u walk. A strongly connected digraph D is primitive provided there is a 

positive integer k such that for each pair of vertices u and v there exist a u k ? v walk and 

a v k ? u walk. The smallest of such positive integer k is the exponent of D and is 

denoted by exp(D ).  

 

It is a well known result that for a primitive digraph on n vertices, see [4], the exp( D ) = 

(n - 1) 2 +ÿ1 . The upper bound is achieved the Wielandt digraph W n on n vertices that 

is a digraph consists of a Hamiltonian cycle v 1 ? v 2 ?ÿ·ÿ·ÿ·ÿ? v n ? v 1 and the arc v n - 1 

? v 1 as in Figure 1. The notion of scrambling index of a primitive digraph was ?rst 

introduced by Akelbek and Kirkland [1, 2].  

 

They de- ?ne the scrambling index of a primitive digraph D to be the smallest positive 

integer k such that for every pair of vertices u and v in D there exists a vertex w in D 

such that there is a u k ? w walk and a v k ? w walk. The scrambling index of a primitive 

digraph is denoted by k (D ). Their results, see [2], show that primitive digraph with 

largest scrambling index is achieved by the Wielandt digraph.  

 

• v n - 1 _ H H H H H H Y _ _ _ __ • v n- 2 _ _ _ __ • v n- 3 _ _3 ·ÿ·ÿ· Q Qs • v 3 A A AU • v 2 

C C CW • v 1 _ _ _ _ _ __ v n • Figure 1. The Wielandt Digraph W n A two-colored digraph 

is a digraph each of whose arc is colored by red or blue. For nonnegative integers h and 

l , an ( h,ÿl)-walk in a two-colored digraph is a walk consisting of h red arcs and l blue 

arcs.  

 

An ( h,ÿl )-walk from u to v is denoted by u ( h,l) -? v . For a walk W in D (2) , we denote r 

(W ) and b ( W ) respectively to be the number of red arcs and blue arcs of W . The 

vector [ r (W ) b(W ) ] is the composition of W .  

 

A strongly connected two-colored digraph D (2) is primitive provided that there are 

nonnegative integers h and l such that for each pair of vertices u and v in D (2) there 

exist a u (h,l ) -? v walk and a v (h,l ) -? u walk. Let D (2) be a two-colored digraph and let 

C = {C 1 ,ÿC 2 ,ÿ.ÿ.ÿ.ÿ,ÿC q } be the set of all cycles in D (2) .  

 

De?ne the cycle matrix M of D (2) to be the matrix M = [ r (C 1 ) r ( C 2 ) ·ÿ·ÿ· r ( C q ) b ( 

C 1 ) b(C 2 ) ·ÿ·ÿ· b ( C q ) ] . That is M is the matrix such that the ith column of M is the 

composition of the cycle C i , i =ÿ1, 2,ÿ.ÿ.ÿ.ÿ,ÿq . The content of Universal Journal of 
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the rank of M is less than 2 and the greatest common divisor of the determinants of the 

2 by 2 submatrices of M , otherwise.  

 

The following theorem presents an algebraic characterization for a primitive 

two-colored digraph. Theorem 1.1 [5] Let D (2) be a two-colored digraph with at least 

one arc of each color. The two-colored digraph D (2) is primitive if and only if the 

content of its cycle matrix is 1 .  

 

We generalize the notion of scrambling index of a primi- tive digraph to that of 

scrambling index of a primitive two- colored digraph. For a primitive two-colored 

digraph D (2) we de?ne the scrambling index of D (2) to be the smallest positive integer 

h + l over all nonnegative integers h and l such that for every pair of vertices u and v in 

D (2) there is a vertex w with the property that there is a u ( h,l ) -? w walk and a v ( h,l ) 

-? w walk.  

 

The scrambling index of D (2) is denoted by k ( D (2) ) . Ananichev, Gusev, and Volkov [3] 

have used primitive di- graphs with large exponents in attempt to ?nd slowly syn- 

chronizing automata. Such primitive digraphs consist of cy- cles with two distinct 

lengths.  

 

An automaton on two input let- ters over a ?nite states is synchronizing if there exists a 

word, called a reset word, of ?nite length that brings all states to a particular state. ? 

Cern ´ y’s conjecture states that for an automa- ton on two input letters A with n states, 

the length of a reset word is no more than ( n - 1) 2 .  

 

This is close to the exponent of a Wielandt digraph on n vertices which is ( n - 1) 2 +ÿ1 . 

Let A be a synchronizing automaton on two input letters and let D (2) be a two-colored 

digraph representation of A . An automaton A is synchronizing with reset word of length 

h + l if there exists a vertex u in D (2) such that for each vertex v in D (2) there is a v ( h,l 

) -? u walk, moreover the order of appearance of red and blue arcs in each v ? u walk are 

the same.  

 

Thus the scrambling index of a two-colored digraph may be used as a lower bound for t 

he length of a reset word for a synchronizing automaton with two input letters. In this 

paper, we discuss the scrambling index of two- colored Wielandt digraphs W (2) n that 

is a two-colored digraph obtained by coloring each arc of the Wielandt digraph W n 

with either red or blue.  

 

In Section 2, we discuss a way to determine a lower and an upper bound for scrambling 

index of two-colored digraph consisting two cycles. In Section 3 we discuss the 



scrambling index of two-colored Wielandt di- graph. 2 Lower and Upper Bound In this 

section, we discuss a way in setting up lower and upper bound for scrambling index of 

primitive two-colored digraph, especially those that consist of two cycles. We ?rst note 

that every walk in a two-colored digraph can be decomposed into a path and some 

cycles.  

 

This implies for every u ( h,l ) -? v walk we have the following relationship [ h l ] = [ r ( p 

uv ) b ( p uv ) ] + z 1 [ r ( C 1 ) b ( C 1 ) ] + z 2 [ r ( C 2 ) b ( C 2 ) ] + ·ÿ·ÿ· + z q [ r ( C q ) b 

( C q ) ] = [ r ( p uv ) b ( p uv ) ] + M z for some path p uv from u to v and some 

nonnegative integer vector z . The following proposition will be useful in order to deter- 

mine an upper bound for scrambling index. Proposition 2.1  

 

Let D (2) be a primitive two-colored di- graph consisting of two cycles C 1 and C 2 . 

Suppose v is a vertex that belongs to both cycles. If for some positive inte- gers h and l , 

there is a path p u,v from u to v such that the system M z + [ r ( p u,v ) b ( p u,v ) ] = [ h l 

] (1) has nonnegative integer solution, then there is an ( h,ÿl ) -walk from u to v . Proof. 

Assume that the solution to the system (1) is z = ( z 1 ,ÿz 2 ) T . We consider four cases.  

 

If z 1 > 0 and z 2 > 0 , then the walk that starts at u , moves to v along the ( r ( p u,v ) ,ÿb 

( p u,v )) -path p u,v and ?nally moves z 1 and z 2 times around the cycles C 1 and C 2 , 

respectively, and back at v is an ( h,ÿl ) -walk from u to v . If z 1 =ÿ0 and z 2 > 0 , then 

the walk that starts at u , moves to v along the ( r ( p u,v ) ,ÿb ( p u,v )) -path p u,v and 

?nally moves z 2 times around the cycle C 2 and back at v is an ( h,ÿl ) -walk from u to v .  

 

Similarly if z 1 > 0 and z 2 =ÿ0 , then the walk that starts at u , moves to v along the ( r ( 

p u,v ) ,ÿb ( p u,v )) -path p u,v and ?nally moves z 1 times around the cycle C 1 and back 

at v is an ( h,ÿl ) -walk from u to v . Finally, if z 1 = z 2 =ÿ0 , then the ( r ( p u,v ) ,ÿb ( p u,v 

)) -path p u,v from u to v is an ( h,ÿl ) -walk.  

 

We next discuss a way in setting up a lower bound for the scrambling index. Let u and v 

be two different vertices in a primitive two-colored digraph D (2) . For a vertex w in D (2) 

, the local scrambling index of u and v at the vertex w , k u,v ( w ) , is the smallest 

positive integer h + l over all pairs of nonnegative integers h and l such that there are u 

( h,l ) -? w and v ( h,l ) -? w walks.  

 

The local scrambling index of vertices u and v in D (2) , denoted k u,v ( D (2) ) , is de?ned 

by k u,v ( D (2) )ÿ=ÿmin w { k u,v ( w ) } . From the de?nition of scrambling index we have 

max u,v ? V ( D (2) ) { k u,v ( D (2) ) }ÿ= k ( D (2) ) . (2) Let D (2) be a primitive two-colored 

digraph consisting of two cycles and let u and v be two distinct vertices in D (2) .  

 



For some vertex w suppose that k u,v ( w ) is obtained by an ( h,ÿl ) -walk. We have the 

following result that will be useful in ?nding a lower bound for k u,v ( D (2) ) and hence 

for the scrambling index. Lemma 2.2 Let D (2) be a primitive two-colored digraph 

consisting of two cycles C 1 and C 2 with cycle matrix M = [ r ( C 1 ) r ( C 2 ) b ( C 1 ) b ( 

C 2 ) ] , and let u and v be any two dis- tinct vertices in D (2) . Suppose there is a vertex 

w such that there is a u ( h,l ) -? w walk and v ( h,l ) -? w walk.  

 

If q 1 and q 2 are integers such that [ h l ] = M [ q 1 q 2 ] , then [ q 1 q 2 ] = M - 1 [ r ( p 

uw ) b ( p uw ) ] for some path p uw , and [ q 1 q 2 ] = M - 1 [ r ( p vÿw ) b ( p vÿw ) ] for 

some path p vÿw . 252 The Scrambling Index of Two-colored Wielandt Digraph Proof. 

Since D (2) is primitive, then by Theorem 1.1 we have det( M )ÿ= ± 1 . Without loss of 

generality we assume that det( M )ÿ=ÿ1 .  

 

Since every walk can be decomposed into a path and some cycles, then [ h l ] = [ r ( p 

uw ) b ( p uw ) ] + M z , (3) for some path p uw from u to w and some nonnegative 

integer vector z . Comparing (3) and [ h l ] = M [ q 1 q 2 ] , we have z = [ q 1 q 2 ] - M - 1 

[ r ( p uw ) b ( p uw ) ] = 0 . Hence [ q 1 q 2 ] = M - 1 [ r ( p uw ) b ( p uw ) ] for some 

path p uw . Similarly [ q 1 q 2 ] = M - 1 [ r ( p vÿw ) b ( p vÿw ) ] for some path p vÿw .  

 

We note from Lemma 2.2 that [ q 1 q 2 ] = M - 1 [ r ( p uw ) b ( p uw ) ] = [ b ( C 2 ) r ( p 

uw ) - r ( C 2 ) b ( p uw ) r ( C 1 ) b ( p uw ) - b ( C 1 ) r ( p uw ) ] . Hence we have q 1 = b 

( C 2 ) r ( p uw ) - r ( C 2 ) b ( p uw ) (4) for some path p uw from u to w .  

 

Similarly, we have q 2 = r ( C 1 ) b ( p vÿw ) - b ( C 1 ) r ( p vÿw ) (5) for some path p vÿw 

from v to w . Thus [ h l ] = M [ b ( C 2 ) r ( p uw ) - r ( C 2 ) b ( p uw ) r ( C 1 ) b ( p vÿw ) - 

b ( C 1 ) r ( p vÿw ) ] for some paths p uw and p vÿw . 3 Main Results In this section we 

present formulae for scrambling index of two-colored Wieland digraph.  

 

We ?rst present primitivity condition for two-colored Wielandt digraph and then discuss 

formulae their scrambling index. We note that the Wielandt digraph consists of two 

cycles. They are the n -cycle v 1 ? v 2 ?ÿ·ÿ·ÿ·ÿ? v n ? v 1 and the ( n - 1) -cycle v 1 ? v 2 

?ÿ·ÿ·ÿ·ÿ? v n - 1 ? v 1 . As a consequence of Theorem 1.1  

 

we have the following charac- terization for primitivity of a two-colored Wielandt 

digraph. Lemma 3.1 [6] A two-colored Wielandt digraph W (2) n on n vertices is 

primitive if and only if its cycle matrix M = [ r ( C 1 ) r ( C 2 ) b ( C 1 ) b ( C 2 ) ] = [ n - 1 n 

- 2 1ÿ1 ] . Lemma 3.1 implies that a primitive two-colored Wielandt digraph has at most 

two blue arcs. Moreover, every cycle contains exactly one blue arc.  

 

We determine the scrambling index of W (2) n based on how many blue arcs W (2) n 



has. If W (2) n has only one blue arcs, then the blue arc must lie on the v 1 ? v n - 2 path. 

So the blue arc of W (2) n must be of the form v a ? v a +1 where 1 = a = n - 2 .  

 

If w (2) n has two blue arcs, then one of them must lie on the cycle C 2 but not on C 1 

and the other must lie on C 1 but not on C 2 . This implies the two blue arcs either have 

the same terminal vertex or have the same initial vertex. We ?rst discuss the case where 

W (2) n has only one blue arc and then discuss the case where W (2) n has two blue arcs. 

Theorem 3.2  

 

Let W (2) n be a two colored Wielandt digraph on n = 4 vertices. If W (2) n has only one 

blue arc v a ? v a +1 , where 1 = a = n - 2 , then k ( W (2) n )ÿ= n 2 - 2 n +ÿ1 - a . Proof. 

We show that k ( W (2) n ) = n 2 - 2 n +ÿ1 - a . This is done by showing that k v a ,v a +1 

( W (2) n ) = n 2 - 2 n +ÿ1 - a .  

 

We assume that there are v a ( h,l ) -? w and v a +1 ( h,l ) -? w walks for some vertex w ? 

W (2) n . We present a lower bound for k v a ,v a +1 ( w ) and consider two cases 

depending on the position of the vertex w . Case 1 . The vertex w = v t where 1 = t = a 

Notice that there are two paths p a +1 ,t from v a +1 to v t .  

 

They are an ( n - 2ÿ+ t - a, 0) -path and an ( n - 1ÿ+ t - a ) -path. Considering the ( n - 

2ÿ+ t - a, 0) -path and (4) we have q 1 = b ( C 2 ) r ( p a +1 ,t ) - r ( C 2 ) b ( p a +1 ,t ) 

=ÿ(1)( n - 2ÿ+ t - a ) - ( n - 2)(0)ÿ= n - 2ÿ+ t - a.  

 

Considering the ( n - 1ÿ+ t - a, 0) -path and (4) we have q 1 = b ( C 2 ) r ( p a +1 ,t ) - r ( 

C 2 ) b ( p a +1 ,t ) =ÿ(1)( n - 1ÿ+ t - a ) - ( n - 2)(0)ÿ= n - 1ÿ+ t - a. Therefore we 

conclude that q 1 = n - 2ÿ+ t - a . There are two paths p a,t from v a to v t . They are an ( 

n - 2ÿ+ t - a, 1) -path and an ( n - 1ÿ+ t - a, 1) -path.  

 

Considering the ( n - 2ÿ+ t - a, 1) -path and (5) we have q 2 = r ( C 1 ) b ( p a,t ) - b ( C 1 

) r ( p a,t ) =ÿ( n - 1)(1) - (1)( n - 2ÿ+ t - a )ÿ= a - t +ÿ1 . Considering the ( n - 1ÿ+ t - a, 1) 

-path and (5) we have q 2 = r ( C 1 ) b ( p a,t ) - b ( C 1 ) r ( p a,t ) =ÿ( n - 1)(1) - (1)( n - 

1ÿ+ t - a )ÿ= a - t. Therefore, we conclude that q 2 = a - t . Now by Lemma 2.2  

 

we have [ h l ] = M [ q 1 q 2 ] = M [ n - 2ÿ+ t - a a - t ] = [ n 2 - 3 n +ÿ2ÿ+ t - a n - 2 ] , 

and hence k v a ,v a +1 ( v t ) = n 2 - 3 n + t - a (6) Universal Journal of Applied 

Mathematics 2(6): 250-255, 2014 253 for all 1 = t = a . Case 2 . The vertex w = v t where 

a +ÿ1 = t = n There is a unique path p a +1 ,t from v a +1 to v t which is a ( t - a - 1 , 0) 

-path.  

 

Using this path and (4) we have q 1 = b ( C 2 ) r ( p a +1 ,t ) - r ( C 2 ) b ( p a +1 ,t ) =ÿ(1)( 



t - a - 1) - ( n - 2)(0)ÿ= t - a - 1 . There is a unique path p a,t from v a to v t which is a ( t 

- a - 1 , 1) -path. Using this path and (5) we have q 2 = r ( C 1 ) b ( p a,t ) - b ( C 1 ) r ( p 

a,t ) =ÿ( n - 1)(1) - (1)( t - a - 1)ÿ= n - t + a. By Lemma 2.2  

 

we ?nd that [ h l ] = M [ q 1 q 2 ] = M [ t - a - 1 n - t + a ] = [ n 2 - 3 n +ÿ1ÿ+ t - a n - 1 ] 

, and hence k v a ,v a +1 ( v t ) = n 2 - 3 n + t - a (7) for all a +ÿ1 = t = n . From (6) and 

(7) we conclude that k v a ,v a +1 ( W (2) n ) = n 2 - 2 n +ÿ1 - a and by (2) we have k ( W 

(2) n ) = n 2 - 2 n +ÿ1 - a . It remains to show that k ( W (2) n ) = n 2 - 2 n +ÿ1 - a . For 

each vertex v t ,ÿt =ÿ1 , 2 ,ÿ.ÿ.ÿ.ÿ,ÿn , we show that there is v t ( h,l ) -? v 1 with [ h l ] = [ n 

2 - 3 n +ÿ3 - a n - 2 ] . By Proposition 2.1  

 

it suf?ces to show that the system M z + [ r ( p t, 1 ) b ( p t, 1 ) ] = [ n 2 - 3 n +ÿ3 - a n - 2 

] (8) has nonnegative integer solution for some path p t, 1 from v t to v 1 . The solution 

to the system (8) is the integer vector z = [ ( n - 1 - a )ÿ+ÿ( n - 2) b ( p t, 1 ) - r ( p t, 1 ) a 

- 1ÿ+ r ( p t, 1 )ÿ+ b ( p t, 1 ) - b ( p t, 1 ) n ] . If 1 = t = a , then there is an ( n - t, 1) -path 

p t, 1 from v t to v 1 . Using this path we have that z 1 = n - 3ÿ+ t - a and z 2 = a - t .  

 

Since t = 1 and a = n - 2 we have z 1 = 0 and since t = a we have z 2 = 0 . If a +ÿ1 = t = 

n , then there is an ( n - t, 0) -path p t, 1 from v t to v 1 . Using this path we have that z 1 

= t - ( a +ÿ1) and z 2 = n - t + a - 1 . Since t = a +ÿ1 we have z 1 = 0 and since t = n and 

a = 1 we have z 2 = 0 . Thus for each t =ÿ1 , 2 ,ÿ.ÿ.ÿ.ÿ,ÿn , there is a path p t 1 from v t to 

v 1 such that the system (8) has nonnegative integer solution. By Proposition 2.1  

 

for each vertex v t ,ÿt =ÿ1 , 2 ,ÿ.ÿ.ÿ.ÿ,ÿn , there is an ( h,ÿl ) -walk from v t to v 1 with h = 

n 2 - 3 n +ÿ3 - a and l = n - 2 . We now can conclude that for each pair of distinct 

vertices v i and v j in W (2) n , there is vertex v 1 with the property that there are v i ( h,l ) 

-? v 1 walk and v j ( h,l ) -? v 1 walk with [ h l ] = [ n 2 - 3 n +ÿ3 - a n - 2 ] . This implies k 

( W (2) n ) = n 2 - 2 n +ÿ1 - a .  

 

We next discuss the scrambling index of primitive two- colored Wielandt digraph that 

contains two blue arcs. We ?rst discuss the case where the two blue arcs have the same 

terminal vertex. Theorem 3.3 Let W (2) n be a two colored Wielandt digraph on n = 4 

vertices. If W (2) n has two blue arcs v n - 1 ? v 1 and v n ? v 1 , then k ( W (2) n )ÿ= n 2 - 

2 n +ÿ1 . Proof. We ?rst show that k ( W (2) n ) = n 2 - 2 n +ÿ1 .  

 

It suf?ces to show that k v n ,v 1 ( W (2) n ) = n 2 - 2 n +ÿ1 . We assume there are v n ( 

h,l ) -? w and v 1 ( h,l ) -? w walks for some vertex w in W (2) n . We set up a lower bound 

for k v n ,v 1 ( w ) . Notice that for each t =ÿ1 , 2 ,ÿ.ÿ.ÿ.ÿ,ÿn , there is a unique path p 1 ,t 

from v 1 to v t which is a ( t - 1 , 0) -path and there is a unique path p n,t from v n to v t 

which is a ( t - 1 , 1) -path.  



 

Using the ( t - 1 , 0) -path from v 1 to v t and (4) we have q 1 = b ( C 2 ) r ( p 1 ,t ) - r ( C 

2 ) b ( p 1 ,t ) =ÿ(1)( t - 1) - ( n - 2)(0)ÿ= t - 1 . Using the ( t - 1 , 1) -path from v n to v t 

and (5) we have q 2 = r ( C 1 ) b ( p n,t ) - b ( C 1 ) r ( p n,t ) =ÿ( n - 1)(1) - (1)( t - 1)ÿ= n - 

t. Now Lemma 2.2 implies that [ h l ] = M [ q 1 q 2 ] = M [ t - 1 n - t ] = [ n 2 - 3 n +ÿ1ÿ+ 

t n - 1 ] . Therefore k v n ,v 1 ( v t ) = n 2 - 2 n + t for all 1 = t = n .  

 

Since t = 1 , we conclude that k v n ,v 1 ( W (2) n ) = n 2 - 2 n +ÿ1 and by (2) we have k ( 

W (2) n ) = n 2 - 2 n +ÿ1 . We next show that k ( W (2) n ) = n 2 - 2 n +ÿ1 . We show that 

for each t =ÿ1 , 2 ,ÿ.ÿ.ÿ.ÿ,ÿn , there is a v t ( h,l ) -? v 1 walk with [ h l ] = [ n 2 - 3 n +ÿ2 n 

- 1 ] . By Proposition 2.1  

 

it suf?ces to show that the system of equa- tion M z + [ r ( p t, 1 ) b ( p t, 1 ) ] = [ n 2 - 3 

n +ÿ2 n - 1 ] (9) has a nonnegative integer solution for some path p t, 1 from v t to v 1 . 

The solution to the system (9) is the integer vector z = [ ( n - 2) b ( p t, 1 ) - r ( p t, 1 ) n - 

1ÿ+ r ( p t, 1 )ÿ+ b ( p t, 1 ) - b ( p t, 1 ) n ] .  

 

If 1 = t = n - 1 , then there is a ( n - 1 - t, 1) -path p t, 1 from v t to v 1 . Using this path 

we ?nd that z 1 = t - 1 and z 2 = n - 1 - t . Since t = 1 we have z 1 = 0 and since t = n - 1 

we have z 2 = 0 . If t = n , there is a (0 , 1) -path p n, 1 from v n to v 1 . Using this path 

we have z 1 = n - 2 and z 2 =ÿ0 . Thus for each t =ÿ1 , 2 ,ÿ.ÿ.ÿ.ÿ,ÿn , there is a path p t 1 

from v t to v 1 such that the system (9) has nonnegative integer solution.  

 

254 The Scrambling Index of Two-colored Wielandt Digraph By Proposition 2.1 for each 

vertex v t ,ÿt =ÿ1 , 2 ,ÿ.ÿ.ÿ.ÿ,ÿn , there is an ( h,ÿl ) -walk from v t to v 1 with h = n 2 - 3 n 

+ÿ2 and l = n - 1 . Therefore, for each pair of distinct vertices v i and v j there is vertex v 

1 with the property that there exist v i ( h,l ) -? v 1 walk and v j ( h,l ) -? v 1 walk with [ h l 

] = [ n 2 - 3 n +ÿ2 n - 1 ] . Therefore, we conclude that k ( W (2) n ) = n 2 - 2 n +ÿ1 .  

 

The following theorem presents the scrambling index of primitive two-colored Wieland 

digraph with two blue arcs that have the same initial vertex. Theorem 3.4 Let W (2) n be 

a two colored Wielandt digraph on n = 4 vertices. If W (2) n has two blue arcs v n - 1 ? v 

1 and v n - 1 ? v n , then k ( W (2) n )ÿ= n 2 - 2 n +ÿ2 . Proof. We show that k ( W (2) n ) 

= n 2 - 2 n +ÿ2 .  

 

It suf?ces to show that k v n - 1 ,v n ( W (2) n ) = n 2 - 2 n +ÿ2 . For this purpose we 

assume that there are v n ( h,l ) -? w and v n - 1 ( h,l ) -? w for some w ? W (2) n . We set 

up a lower bound fro k v n - 1 ,v n ( w ) and consider two cases depending on the 

position of the vertex w . Case 1 .  

 



The vertex w = v t where 1 = t = n - 1 There is a unique path p n,t from v n to v t which 

is a ( t, 0) - path. Using this path and (4) we have q 1 = b ( C 2 ) r ( p n,t ) - r ( C 2 ) b ( p 

n,t ) =ÿ(1)( t ) - ( n - 2)(0)ÿ= t. There are two p n - 1 ,t paths from v n - 1 to v t . They are 

a ( t - 1 , 1) -path and a ( t, 1) -path.  

 

Considering the ( t - 1 , 1) -path and (5) we have q 2 = r ( C 1 ) b ( p n - 1 ,t ) - b ( C 1 ) r ( 

p n - 1 ,t ) =ÿ( n - 1)(1) - (1)( t - 1)ÿ= n - t. Considering the ( t, 1) -path and (5) we have q 

2 = r ( C 1 ) b ( p n - 1 ,t ) - b ( C 1 ) r ( p n - 1 ,t ) =ÿ( n - 1)(1) - (1)( t )ÿ= n - t - 1 . Hence 

we conclude that q 2 = n - t - 1 . Now Lemma 2.2 implies that [ h l ] = M [ q 1 q 2 ] = M [ 

t n - t - 1 ] = [ n 2 - 3 n +ÿ2ÿ+ t n - 1 ] .  

 

Thus k v n - 1 ,v n ( v t ) = n 2 - 2 n +ÿ1ÿ+ t (10) for all 1 = t = n - 1 . Case 2 . The vertex 

w = v n There is a ( n - 1 , 1) -path from v n to v n . Using this path and (4) we ?nd that q 

1 = b ( C 2 ) r ( p n,n ) - r ( C 2 ) b ( p n,n ) =ÿ(1)( n - 1) - ( n - 2)(1)ÿ=ÿ1 . There is a (0 , 1) 

-path from v n - 1 to v n .  

 

Using this path and (5) we ?nd that q 2 = r ( C 1 ) b ( p n - 1 ,n ) - b ( C 1 ) r ( p n - 1 ,n ) 

=ÿ( n - 1)(1) - (1)(0)ÿ= n - 1 . Now Lemma 2.2 implies that [ h l ] = M [ q 1 q 2 ] = M [ 1 n 

- 1 ] = [ n 2 - 2 n +ÿ1 n ] . Thus k v n - 1 ,v n ( v n ) = n 2 - n +ÿ1 . (11) By considering 

(10) and (11) we conclude that k v n - 1 ,v n ( W (2) n ) = n 2 - 2 n +ÿ2 and by (2) we 

conclude k ( W (2) n ) = n 2 - 2 n +ÿ2 .  

 

We next show that k ( W (2) n ) = n 2 - 2 n +ÿ2 . For each vertex v t ,ÿt =ÿ1 , 2 ,ÿ.ÿ.ÿ.ÿ,ÿn , 

we show that there is v t ( h,l ) -? v 1 walk with [ h l ] = [ n 2 - 3 n +ÿ3 n - 1 ] . By 

Proposition 2.1 it suf?ces to show that the system of equa- tions M z + [ r ( p t, 1 ) b ( p 

t, 1 ) ] = [ n 2 - 3 n +ÿ3 n - 1 ] (12) has a nonnegative integer solution for some path p t, 

1 from v t to v 1 .  

 

The solution to the system (12) is the integer vector z = [ 1ÿ+ÿ( n - 2) b ( p t, 1 ) - r ( p t, 

1 ) n - 2ÿ+ r ( p t, 1 )ÿ+ b ( p t, 1 ) - b ( p t, 1 ) n ] . If 1 = t = n - 1 , then there is a ( n - t, 

1) -path p t, 1 from v t to v 1 . Using this path we ?nd z 1 = t - 1 and z 2 = n - 1 - t . 

Since t = 1 we have z 1 = 0 , and since t = n - 1 we have z 2 = 0 . If t = n , then there is a 

(1 , 0) -path p n, 1 from v n to v 1 .  

 

Using this path we have z 1 =ÿ0 and z 2 = n - 1 . Therefore, for each t =ÿ1 , 2 ,ÿ.ÿ.ÿ.ÿ,ÿn , 

the system (12) has a nonnegative integer solution for some path p t, 1 from v t to v 1 . 

By Proposition 2.1 for each vertex v t ,ÿt =ÿ1 , 2 ,ÿ.ÿ.ÿ.ÿ,ÿn , there is an ( h,ÿl ) -walk from 

v t to v 1 with h = n 2 - 3 n +ÿ3 and l = n - 1 .  

 

We now conclude for each pair of distinct vertices v i and v j there is vertex v 1 with the 



property that there are v i ( h,l ) -? v 1 and v j ( h,l ) -? v 1 walks with [ h l ] = [ n 2 - 3 n 

+ÿ3 n - 1 ] . Hence k ( W (2) n ) = n 2 - 2 n +ÿ2 . Let S W (2) n n denote the set of 

positive integers k for which there exists a primitive two-colored Wielandt digraph with 

scrambling index equals to k .  

 

The following result gives the characterization for the set S W (2) n n . Corollary 3.5 Let 

W (2) n be a primitive two-colored Wielandt digraph on n = 4 vertices. Then S W (2) n n 

= { k : n 2 - 3 n +ÿ3 = k = n 2 - 2 n +ÿ2 } . Universal Journal of Applied Mathematics 2(6): 

250-255, 2014 255 Proof. We note from Theorem 3.2 that [ n 2 - 3 n +ÿ3 ,ÿn 2 - 2 n ] ? S 

W (2) n n since 1 = a = n - 2 . By Theorem 3.3 and Theorem 3.4  

 

we conclude that [ n 2 - 3 n +ÿ3 ,ÿn 2 - 2 n +ÿ2] ? S W (2) n n . Since there are only n 

distinct primitive two-colored Wielandt digraphs on n vertices, we have S W (2) n n =ÿ[ 

n 2 - 3 n +ÿ3 ,ÿn 2 - 2 n +ÿ2] . REFERENCES [1] M. Akelbek, S. Kirkland. Coef?cients of 

ergodicity and the scrambling index, Linear Algebra and its Applications, 430, 

1111–1130, 2009. [2] M. Akelbek, S. Kirkland.  

 

Primitive digraphs with the largest scrambling index, Linear Algebra and its Applications, 

430, 1099–1110, 2009. [3] D.S. Ananichev, M. V. Volkov and V. V. Gusev, Primitive Di- 

graphs with Large Exponents and Slowly Synchronizing Au- tomata, Journal of 

Mathematical Sciences, Vol. 192 No. 3 (2013), 263–278 [4] R. A. Brualdi and H. J. Ryser, 

Combinatorial Matrix Theory, Cambridge University Press, 1991. [5] E. Fornasini, M. E. 

Valcher.  

 

Primitivity positive matrix pairs: algebraic characterization graph theoritic description 

and 2D systems interpretations, SIAM J. Matrix Anal. Appl., 19, 71– 88, 1998. [6] B. L. 

Shader, S. Suwilo, Exponents of nonnegative matrix pairs. Linear Algebra and its 

Applications, 263, 275–293, 2003.  
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