Plagiarism Checker X Originality Report

 similarity Found: 12\%Date: Tuesday, August 28, 2018
Statistics: 833 words Plagiarized / 6980 Total words Remarks: Low Plagiarism Detected - Your Document needs Optional Improvement.

Uni versal Journal of Applied Mathematics 2(6): 250-255, 2014 DOI:
10.13189/ujam.2014.020603 http://www.hrpub.org The Scrambling Index of Two-colored Wielandt Digraph Mulyono, Saib Suwilo * Department of Mathematics, University of Sumatera Utara, Medan 20155, Indonesia * Corresponding Author: saib@usu.ac.id Copyright c ?2014 Horizon Research Publishing All rights reserved.

Abstract A digraph is primitive provided there is a positive integer k such that for each pair of vertices u and v there exist walks of length k from u to v and from v to u. The scrambling index of a primitive digraph D is the smallest positive integer k such that for each pair of vertices u and v in D there is a vertex w such that there exist walks of length k from u to w and from v to w . A two-colored digraph is a digraph each of whose arc is colored by red or blue.

In this paper we generalize the notion of scrambling index of a primitive digraph to that of two-colored digraph. We de?ne the scrambling index of a two-colored digraph $D(2)$ to be the smallest positive integer $h+I$ over all pairs of nonnegative integers (h,yll) such that for each pair of distinct vertices u and v there is a vertex w with the property that there are walks form u to w and from v to w consisting of h red arcs and I blue arcs. For two-colored Wielandt digraph on $n=4$ vertices we show the scrambling index lies on the interval [$n 2-3 n+\ddot{y} 3, \ddot{y} n 2-2 n+\ddot{y} 2$].

Keywords Two-colored digraph, Primitive digraph, Scrambling Index, Wielandt digraph 1 Introduction By a nonnegative integer vector $x=0$ we meant a vector each of whose entry is a nonnegative integer. Therefore, the notion $z=x$ means that $z-x=0$. Let D be a digraph. A walk of length k from u to v is a sequence of arcs of the form $u=v 0 ? v 1$,$\ddot{y} v 1$? v $2, \ddot{y} . \ddot{y} . \bar{y} . \ddot{y}, \ddot{y} v k-1$? v $k=v$.

We use the notation $u k$? v walk to represent a walk of length k from u to $v . A u$? v path is a walk with distinct vertices except possibly $u=v$. A cycle is a u ? v path with $u=$ v. A digraph D is strongly con- nected if for each pair of vertices u and v there is $a u ? v$ walk and a v ? u walk. A strongly connected digraph D is primitive provided there is a positive integer k such that for each pair of vertices u and v there exist a $u k$? v walk and a $v k$? u walk. The smallest of such positive integer k is the exponent of D and is denoted by $\exp (\mathrm{D})$.

It is a well known result that for a primitive digraph on n vertices, see [4], the $\exp (D)=$ $(n-1) 2+\ddot{y} 1$. The upper bound is achieved the Wielandt digraph $W n$ on n vertices that is a digraph consists of a Hamiltonian cycle $\vee 1$? $\vee 2 ? \ddot{y} \cdot \ddot{y} \cdot \ddot{y} \cdot \ddot{y}$? $\vee \mathrm{n}$? $\vee 1$ and the arc $\vee \mathrm{n}-1$? v 1 as in Figure 1. The notion of scrambling index of a primitive digraph was ?rst introduced by Akelbek and Kirkland [1, 2].

They de- ?ne the scrambling index of a primitive digraph D to be the smallest positive integer k such that for every pair of vertices u and v in D there exists a vertex w in D such that there is a $u k$? w walk and a $v k$? w walk. The scrambling index of a primitive digraph is denoted by $k(D)$. Their results, see [2], show that primitive digraph with largest scrambling index is achieved by the Wielandt digraph.
 CCCW•v1____ vn•Figure 1. The Wielandt Digraph Wn A two-colored digraph is a digraph each of whose arc is colored by red or blue. For nonnegative integers h and I, an ($h, \ddot{y} l$)-walk in a two-colored digraph is a walk consisting of h red arcs and I blue arcs.

An (h,ÿl)-walk from u to v is denoted by $u(h, I)$-? v. For a walk W in $D(2)$, we denote r (W) and $b(W)$ respectively to be the number of red arcs and blue arcs of W. The vector $[r(W) b(W)]$ is the composition of W.

A strongly connected two-colored digraph $D(2)$ is primitive provided that there are nonnegative integers h and I such that for each pair of vertices u and v in $D(2)$ there exist a $u(h, I)-$? v walk and a $v(h, l)$-? u walk. Let $D(2)$ be a two-colored digraph and let $C=\{C 1, \ddot{y} C 2, \ddot{y} . \ddot{y} . \mathrm{y} . \mathrm{y}, \mathrm{y} C \mathrm{q}\}$ be the set of all cycles in $D(2)$.

De?ne the cycle matrix M of $D(2)$ to be the matrix $M=[r(C 1) r(C 2) \cdot \ddot{y} \cdot \ddot{y} \cdot r(C q) b($ $C 1) b(C 2) \cdot \ddot{y} \cdot \ddot{y} \cdot b(C q)]$. That is M is the matrix such that the ith column of M is the composition of the cycle C $i, i=\ddot{y} 1,2, \ddot{y} . \ddot{y} . \ddot{\mathrm{y}} . \mathrm{y}, \ddot{\mathrm{y} q}$. The content of Universal Journal of Applied Mathematics 2(6): 250-255, 2014251 the 2 by q matrix M is de?ned to be 0 if
the rank of M is less than 2 and the greatest common divisor of the determinants of the 2 by 2 submatrices of M, otherwise.

The following theorem presents an algebraic characterization for a primitive two-colored digraph. Theorem 1.1 [5] Let $\mathrm{D}(2)$ be a two-colored digraph with at least one arc of each color. The two-colored digraph $D(2)$ is primitive if and only if the content of its cycle matrix is 1 .

We generalize the notion of scrambling index of a primi- tive digraph to that of scrambling index of a primitive two-colored digraph. For a primitive two-colored digraph $D(2)$ we de?ne the scrambling index of $D(2)$ to be the smallest positive integer $h+I$ over all nonnegative integers h and I such that for every pair of vertices u and v in $D(2)$ there is a vertex w with the property that there is a $u(h, l)-? w$ walk and $a v(h, l)$ -? w walk.

The scrambling index of $D(2)$ is denoted by $k(D(2))$. Ananichev, Gusev, and Volkov [3] have used primitive di- graphs with large exponents in attempt to ?nd slowly synchronizing automata. Such primitive digraphs consist of cy-cles with two distinct lengths.

An automaton on two input let- ters over a ?nite states is synchronizing if there exists a word, called a reset word, of ?nite length that brings all states to a particular state. ? Cern ' y's conjecture states that for an automa- ton on two input letters A with n states, the length of a reset word is no more than $(n-1) 2$.

This is close to the exponent of a Wielandt digraph on n vertices which is $(n-1) 2+\ddot{y} 1$. Let A be a synchronizing automaton on two input letters and let $D(2)$ be a two-colored digraph representation of A. An automaton A is synchronizing with reset word of length $h+l$ if there exists a vertex u in $D(2)$ such that for each vertex v in $D(2)$ there is a $v(h, l$) -? u walk, moreover the order of appearance of red and blue arcs in each v ? u walk are the same.

Thus the scrambling index of a two-colored digraph may be used as a lower bound for t he length of a reset word for a synchronizing automaton with two input letters. In this paper, we discuss the scrambling index of two- colored Wielandt digraphs W (2) n that is a two-colored digraph obtained by coloring each arc of the Wielandt digraph W n with either red or blue.

In Section 2, we discuss a way to determine a lower and an upper bound for scrambling index of two-colored digraph consisting two cycles. In Section 3 we discuss the
scrambling index of two-colored Wielandt di- graph. 2 Lower and Upper Bound In this section, we discuss a way in setting up lower and upper bound for scrambling index of primitive two-colored digraph, especially those that consist of two cycles. We ?rst note that every walk in a two-colored digraph can be decomposed into a path and some cycles.

This implies for every $u(h, I)-$? v walk we have the following relationship $[h I]=[r(p$ uv) $b(\mathrm{puv})]+\mathrm{z} 1[\mathrm{r}(\mathrm{C} 1) \mathrm{b}(\mathrm{C} 1)]+\mathrm{z} 2[r(\mathrm{C} 2) \mathrm{b}(\mathrm{C} 2)]+\ddot{y} \cdot \ddot{y} \cdot+\mathrm{zq}[r(\mathrm{Cq}) b$ $(C q)]=[r(p$ uv $) b(p u v)]+M$ z for some path p uv from u to v and some nonnegative integer vector z. The following proposition will be useful in order to determine an upper bound for scrambling index. Proposition 2.1

Let $D(2)$ be a primitive two-colored di- graph consisting of two cycles $C 1$ and $C 2$. Suppose v is a vertex that belongs to both cycles. If for some positive inte- gers h and I , there is a path $p u, v$ from u to v such that the system $M z+[r(p u, v) b(p u, v)]=[h \mid$] (1) has nonnegative integer solution, then there is an (h, \ddot{y}) -walk from u to v. Proof. Assume that the solution to the system (1) is $z=(z 1, \ddot{y} z 2) T$. We consider four cases.

If $z 1>0$ and $z 2>0$, then the walk that starts at u, moves to v along the $(r(p u, v), \ddot{y} b$ ($p u, v$)) - path $p u, v$ and ?nally moves $z 1$ and $z 2$ times around the cycles $C 1$ and $C 2$, respectively, and back at v is an (h, \ddot{y}) -walk from u to v. If $z 1=\ddot{y} 0$ and $z 2>0$, then the walk that starts at u, moves to v along the $(r(p u, v), \ddot{y} b(p u, v))$-path $p u, v$ and ?nally moves z 2 times around the cycle C 2 and back at vis an (h,yl) -walk from u to v.

Similarly if $z 1>0$ and $z 2=\ddot{y} 0$, then the walk that starts at u, moves to v along the (r ($p u, v)$, $\ddot{y} b(p u, v))$-path $p u, v$ and ?nally moves z 1 times around the cycle C 1 and back at v is an ($h, \ddot{y} l$) -walk from u to v. Finally, if $z 1=z 2=\ddot{y} 0$, then the ($r(p u, v), \ddot{y} b(p u, v$)) -path $p u, v$ from u to v is an (h, $\mathrm{y} l$) -walk.

We next discuss a way in setting up a lower bound for the scrambling index. Let u and v be two different vertices in a primitive two-colored digraph $D(2)$. For a vertex w in D (2) , the local scrambling index of u and v at the vertex $w, k u, v(w)$, is the smallest positive integer $h+l$ over all pairs of nonnegative integers h and I such that there are u $(h, l)-$? w and $v(h, l)-$? w walks.

The local scrambling index of vertices u and v in $D(2)$, denoted $k u, v(D(2))$, is de?ned by $k u, v(D(2)) \ddot{y}=\ddot{y} m i n w\{k u, v(w)\}$. From the de?nition of scrambling index we have $\max u, v ? V(D(2))\{k u, v(D(2))\} y ̈=k(D(2))$. (2) Let $D(2)$ be a primitive two-colored digraph consisting of two cycles and let u and v be two distinct vertices in D (2) .

For some vertex w suppose that $k u, v(w)$ is obtained by an (h, \ddot{l}) -walk. We have the following result that will be useful in ?nding a lower bound for $k u, v(D(2)$) and hence for the scrambling index. Lemma 2.2 Let $\mathrm{D}(2)$ be a primitive two-colored digraph consisting of two cycles C 1 and $C 2$ with cycle matrix $M=[r(C 1) r(C 2) b(C 1) b($ C 2)], and let u and v be any two dis- tinct vertices in $D(2)$. Suppose there is a vertex w such that there is $\mathrm{a} u(h, l)-$? w walk and $v(h, l)-$? w walk.

If $q 1$ and $q 2$ are integers such that $[h 1]=M[q 1 q 2]$, then $\left[\begin{array}{lll}q & 1 & q\end{array}\right]=M-1[r(p$ uw) b (p uw)] for some path p uw, and $[q 1 q 2]=M-1[r(p$ vÿw $) b(p$ vÿw)] for some path p vÿw. 252 The Scrambling Index of Two-colored Wielandt Digraph Proof. Since $D(2)$ is primitive, then by Theorem 1.1 we have $\operatorname{det}(M) \ddot{y}= \pm 1$. Without loss of generality we assume that $\operatorname{det}(M) \ddot{y}=\ddot{y} 1$.

Since every walk can be decomposed into a path and some cycles, then [hl]=[r(p) uw) b (p uw)] $+M z$, (3) for some path p uw from u to w and some nonnegative integer vector z. Comparing (3) and $[\mathrm{hl}]=\mathrm{M}[\mathrm{q} 1 \mathrm{q} 2$], we have $\mathrm{z}=[\mathrm{q} 1 \mathrm{q} 2$]-M-1 $[r(p$ uw $) b(p$ uw $)]=0$. Hence $[q 1 q 2]=M-1[r(p u w) b(p u w)]$ for some path p uw. Similarly $[q 1 q 2]=M-1[r(p$ vÿw $) b(p$ vÿw $)]$ for some path p vÿw.

We note from Lemma 2.2 that $[q 1 q 2]=M-1[r(p u w) b(p u w)]=[b(C 2) r(p$ uw) $-\mathrm{r}(\mathrm{C} 2) \mathrm{b}(\mathrm{p}$ uw $) \mathrm{r}(\mathrm{C} 1) \mathrm{b}(\mathrm{p}$ uw $)-\mathrm{b}(\mathrm{C} 1) \mathrm{r}(\mathrm{p}$ uw $)]$. Hence we have $\mathrm{q} 1=\mathrm{b}$ (C 2) r (p uw) $-r(C 2$) b (p uw) (4) for some path p uw from uto w.

Similarly, we have $q 2=r\left(\begin{array}{c}\text { 1 }\end{array}\right) b(p$ vÿw $)-b(C 1) r(p$ vÿw) (5) for some path p vÿw from v to w. Thus [hl] $=M[b(C 2) r(p u w)-r(C 2) b(p u w) r(C 1) b(p$ vÿw $)-$ $b(C 1) r(p$ vÿw)] for some paths p uw and p vÿw. 3 Main Results In this section we present formulae for scrambling index of two-colored Wieland digraph.

We ?rst present primitivity condition for two-colored Wielandt digraph and then discuss formulae their scrambling index. We note that the Wielandt digraph consists of two cycles. They are the n-cycle $\vee 1$? $\vee 2 ? \ddot{y} \cdot \ddot{y} \cdot \bar{y} \cdot \ddot{y}$? $\vee n ? \vee 1$ and the $(n-1)$-cycle $\vee 1$? $\vee 2$ $? \ddot{y} \cdot \ddot{y} \cdot \ddot{y} \cdot \ddot{y} ? \vee n-1$? v 1 . As a consequence of Theorem 1.1
we have the following charac- terization for primitivity of a two-colored Wielandt digraph. Lemma 3.1 [6] A two-colored Wielandt digraph W (2) n on n vertices is primitive if and only if its cycle matrix $M=[r(C 1) r(C 2) b(C 1) b(C 2)]=[n-1 n$ - 21 y 1] . Lemma 3.1 implies that a primitive two-colored Wielandt digraph has at most two blue arcs. Moreover, every cycle contains exactly one blue arc.

We determine the scrambling index of $W(2) n$ based on how many blue arcs W (2) n
has. If $\mathrm{W}(2) \mathrm{n}$ has only one blue arcs, then the blue arc must lie on the v 1 ? $\mathrm{v} \mathrm{n}-2$ path. So the blue arc of $W(2) n$ must be of the form $v a ? v a+1$ where $1=a=n-2$.

If $w(2) n$ has two blue arcs, then one of them must lie on the cycle $C 2$ but not on $C 1$ and the other must lie on C 1 but not on $C 2$. This implies the two blue arcs either have the same terminal vertex or have the same initial vertex. We ?rst discuss the case where $\mathrm{W}(2) \mathrm{n}$ has only one blue arc and then discuss the case where $\mathrm{W}(2) \mathrm{n}$ has two blue arcs. Theorem 3.2

Let W (2) n be a two colored Wielandt digraph on $n=4$ vertices. If $W(2) n$ has only one blue arc $v a$? $v a+1$, where $1=a=n-2$, then $k(W(2) n) \ddot{y}=n 2-2 n+\ddot{y} 1-a$. Proof. We show that $k(W(2) n)=n 2-2 n+\ddot{y} 1-a$. This is done by showing that $k v a, v a+1$ $(W(2) n)=n 2-2 n+y ̈ 1-a$.

We assume that there are $v a(h, l)-$? w and $v a+1(h, l)-$? w walks for some vertex w ? $\mathrm{W}(2) \mathrm{n}$. We present a lower bound for $\mathrm{k} v \mathrm{a}, \mathrm{v} \mathrm{a}+1$ (w) and consider two cases depending on the position of the vertex w. Case 1 . The vertex $w=v t$ where $1=t=a$ Notice that there are two paths $\mathrm{pa}+1, \mathrm{t}$ from $\mathrm{va}+1$ to v t .

They are an ($n-2 \ddot{y}+t-a, 0)$-path and an ($n-1 \ddot{y}+t-a)$-path. Considering the ($n-$ $2 \ddot{y}+t-a, 0)$-path and (4) we have q $1=b(C 2) r(p a+1, t)-r(C 2) b(p a+1, t)$ $=\ddot{y}(1)(n-2 \ddot{y}+t-a)-(n-2)(0) \ddot{y}=n-2 \ddot{y}+t-a$.

Considering the $(n-1 \ddot{y}+t-a, 0)-p a t h$ and (4) we have $q 1=b(C 2) r(p a+1, t)-r($ $C 2) b(p a+1, t)=\ddot{y}(1)(n-1 \ddot{y}+t-a)-(n-2)(0) \ddot{y}=n-1 \ddot{y}+t-a$. Therefore we conclude that $q 1=n-2 \ddot{y}+t-a$. There are two paths p a,t from v a to $v t$. They are an ($n-2 \ddot{y}+t-a, 1)-p a t h$ and an ($n-1 \ddot{y}+t-a, 1)-$ path.

Considering the $(n-2 \ddot{y}+t-a, 1)-p a t h$ and (5) we have $q 2=r(C 1) b(p a, t)-b(C 1$ $) r(p a, t)=\ddot{y}(n-1)(1)-(1)(n-2 \ddot{y}+t-a) \ddot{y}=a-t+\ddot{y} 1$. Considering the $(n-1 \ddot{y}+t-a, 1)$ -path and (5) we have $q 2=r(C 1) b(p a, t)-b(C 1) r(p a, t)=\ddot{y}(n-1)(1)-(1)(n-$ $1 \ddot{y}+t-a) \ddot{y}=a-t$. Therefore, we conclude that $q 2=a-t$. Now by Lemma 2.2
we have $[h \Gamma]=M[q 1 q 2]=M[n-2 \ddot{y}+t-a a-t]=[n 2-3 n+\ddot{y} 2 \ddot{y}+t-a n-2]$, and hence $\mathrm{k} v \mathrm{a}, \mathrm{v} \mathrm{a}+1$ (v t$)=\mathrm{n} 2-3 \mathrm{n}+\mathrm{t}-\mathrm{a}(6)$ Universal Journal of Applied Mathematics 2(6): 250-255, 2014253 for all $1=t=a$. Case 2 . The vertex $w=v t$ where $a+\ddot{y} 1=t=n$ There is a unique path $p a+1, t$ from $v a+1$ to $v t$ which is $a(t-a-1,0)$ -path.

Using this path and (4) we have $q 1=b(C 2) r(p a+1, t)-r(C 2) b(p a+1, t)=\ddot{y}(1)($
$t-a-1)-(n-2)(0) \ddot{y}=t-a-1$. There is a unique path $p a, t$ from $v a$ to $v t$ which is $a(t$ - a - 1, 1) -path. Using this path and (5) we have $q 2=r(C 1) b(p a, t)-b(C 1) r(p$ $a, t)=\ddot{y}(n-1)(1)-(1)(t-a-1) \ddot{y}=n-t+a$. By Lemma 2.2
we ?nd that $[\mathrm{hl}]=\mathrm{M}[\mathrm{q} 1 \mathrm{q} 2]=\mathrm{M}[\mathrm{t}-\mathrm{a}-1 \mathrm{n}-\mathrm{t}+\mathrm{a}]=[\mathrm{n} 2-3 \mathrm{n}+\ddot{y} 1 \ddot{y}+\mathrm{t}-\mathrm{an}-1]$, and hence $k v a, v a+1(v t)=n 2-3 n+t-a(7)$ for all $a+\ddot{y} 1=t=n$. From (6) and (7) we conclude that $k \vee a, v a+1(W(2) n)=n 2-2 n+\ddot{y} 1-a$ and by (2) we have $k(W$ (2) n) $=n 2-2 n+\ddot{y} 1-a$. It remains to show that $k(W(2) n)=n 2-2 n+\ddot{y} 1-a$. For each vertex $\vee t, \ddot{y} t=\ddot{y} 1,2, \ddot{y} . \ddot{y} . \ddot{y} . \ddot{y}, \ddot{y} n$, we show that there is $\vee t(h, l)-$? $v 1$ with $[h l]=[n$ 2-3n+̈̈3-an-2]. By Proposition 2.1
it suf?ces to show that the system $M z+[r(p t, 1) b(p t, 1)]=[n 2-3 n+\ddot{y} 3-a n-2$] (8) has nonnegative integer solution for some path $p t, 1$ from $v t$ to $v 1$. The solution to the system (8) is the integer vector $z=[(n-1-a) \ddot{y}+\ddot{y}(n-2) b(p t, 1)-r(p t, 1) a$ $-1 \ddot{y}+r(p t, 1) \ddot{y}+b(p t, 1)-b(p t, 1) n]$. If $1=t=a$, then there is an $(n-t, 1)$-path $p t, 1$ from $v t$ to $v 1$. Using this path we have that $z 1=n-3 \ddot{y}+t-a$ and $z 2=a-t$.

Since $t=1$ and $a=n-2$ we have $z 1=0$ and since $t=a$ we have $z 2=0$. If $a+\ddot{y} 1=t=$ n, then there is an $(n-t, 0)$-path $p t, 1$ from $v t$ to $v 1$. Using this path we have that $z 1$ $=t-(a+\ddot{y} 1)$ and $z 2=n-t+a-1$. Since $t=a+\ddot{y} 1$ we have $z 1=0$ and since $t=n$ and $a=1$ we have $z 2=0$. Thus for each $t=\ddot{y} 1,2, \ddot{y} . \ddot{y} . \ddot{y} . \ddot{y}, \ddot{y} n$, there is a path $p t 1$ from $v t$ to v 1 such that the system (8) has nonnegative integer solution. By Proposition 2.1
for each vertex $\vee t, \ddot{y} t=\ddot{y} 1,2, \ddot{y} . \ddot{y} . \ddot{y} . \ddot{y}, \ddot{y} n$, there is an ($h, \ddot{y} l$) -walk from $v t$ to $\vee 1$ with $h=$ $n 2-3 n+\ddot{y} 3-a$ and $I=n-2$. We now can conclude that for each pair of distinct vertices viand vjin $\mathrm{W}(2) \mathrm{n}$, there is vertex $v 1$ with the property that there are vi(h,l) $-? \vee 1$ walk and $v j(h, l)-? v 1$ walk with $[h l]=[n 2-3 n+\ddot{y} 3-a n-2]$. This implies k $(W(2) n)=n 2-2 n+\ddot{y} 1-a$.

We next discuss the scrambling index of primitive two-colored Wielandt digraph that contains two blue arcs. We ?rst discuss the case where the two blue arcs have the same terminal vertex. Theorem 3.3 Let $W(2) n$ be a two colored Wielandt digraph on $n=4$ vertices. If $W(2) n$ has two blue $\operatorname{arcs} v n-1$? $v 1$ and $v n ? v 1$, then $k(W(2) n) \ddot{y}=n 2-$ $2 n+\ddot{y} 1$. Proof. $W e$?rst show that $k(W(2) n)=n 2-2 n+\ddot{y} 1$.

It suf?ces to show that $k \vee n, v 1(W(2) n)=n 2-2 n+\ddot{y} 1$. We assume there are $\vee \mathrm{n}($ $h, I)$-? w and v 1 (h,l) -? w walks for some vertex win W (2) n. We set up a lower bound for $k \vee n, v 1$ (w) . Notice that for each $t=\ddot{y} 1,2, \ddot{y} . \ddot{y} . \ddot{y} . \bar{y}, \ddot{y} n$, there is a unique path $p 1, t$ from $v 1$ to $v t$ which is a $(t-1,0)$-path and there is a unique path $p n, t$ from $v n$ to $v t$ which is a $(t-1,1)$-path.

Using the $(t-1,0)$-path from $v 1$ to $v t$ and (4) we have $q 1=b(C 2) r(p 1, t)-r(C$ $2) b(p 1, t)=\ddot{y}(1)(t-1)-(n-2)(0) \ddot{y}=t-1$. Using the $(t-1,1)-p a t h$ from $v n$ to $v t$ and (5) we have q $2=r(C 1) b(p n, t)-b(C 1) r(p n, t)=\ddot{y}(n-1)(1)-(1)(t-1) \ddot{y}=n-$ t. Now Lemma 2.2 implies that $[\mathrm{hl}]=\mathrm{M}[\mathrm{q} 1 \mathrm{q} 2]=\mathrm{M}[\mathrm{t}-1 \mathrm{n}-\mathrm{t}]=[\mathrm{n} 2-3 \mathrm{n}+\ddot{y} 1 \mathrm{y}+$ $\mathrm{t} \mathrm{n}-1]$. Therefore $\mathrm{k} v \mathrm{n}, \mathrm{v} 1(\mathrm{vt})=\mathrm{n} 2-2 \mathrm{n}+\mathrm{t}$ for all $1=\mathrm{t}=\mathrm{n}$.

Since $t=1$, we conclude that $k v n, v 1(W(2) n)=n 2-2 n+\ddot{y} 1$ and by (2) we have k ($W(2) n)=n 2-2 n+\ddot{y} 1$. We next show that $k(W(2) n)=n 2-2 n+\ddot{y} 1$. We show that for each $t=\ddot{y} 1,2$, $\ddot{y} . \ddot{y} . \ddot{y} . \bar{y}, \ddot{y} n$, there is a $v t(h, l)-$? v 1 walk with $[h l]=[n 2-3 n+\ddot{y} 2 n$ - 1] . By Proposition 2.1
it suf?ces to show that the system of equa- tion $M z+[r(p t, 1) b(p t, 1)]=[n 2-3$ $n+\ddot{y} 2 n-1]$ (9) has a nonnegative integer solution for some path $p t, 1$ from $v t$ to $v 1$. The solution to the system (9) is the integer vector $z=[(n-2) b(p t, 1)-r(p t, 1) n-$ $1 \ddot{y}+r(p t, 1) \ddot{y}+b(p t, 1)-b(p t, 1) n]$.

If $1=t=n-1$, then there is $a(n-1-t, 1)$-path $p t, 1$ from $v t$ to $v 1$. Using this path we ?nd that $\mathrm{z} 1=\mathrm{t}-1$ and $\mathrm{z} 2=\mathrm{n}-1-\mathrm{t}$. Since $\mathrm{t}=1$ we have $\mathrm{z} 1=0$ and since $\mathrm{t}=\mathrm{n}-1$ we have $z 2=0$. If $t=n$, there is a $(0,1)$-path $p n, 1$ from $v n$ to $v 1$. Using this path we have $z 1=n-2$ and $z 2=\ddot{y} 0$. Thus for each $t=\ddot{y} 1,2, \ddot{y} . \ddot{y} . \ddot{y} . \ddot{y}, \ddot{y} n$, there is a path $p t 1$ from $v t$ to $v 1$ such that the system (9) has nonnegative integer solution.

254 The Scrambling Index of Two-colored Wielandt Digraph By Proposition 2.1 for each vertex $\vee t, \ddot{y} t=\ddot{y} 1,2, \ddot{y} . \ddot{y} . \ddot{y} . \ddot{y}, \not y n$, there is an ($h, \ddot{y} l$) -walk from $v t$ to $v 1$ with $h=n 2-3 n$ $+\ddot{y} 2$ and $I=n-1$. Therefore, for each pair of distinct vertices $v i$ and $v j$ there is vertex v 1 with the property that there exist $v i(h, I)-$? v 1 walk and $v j(h, l)-$? $v 1$ walk with [h I $]=[n 2-3 n+\ddot{y} 2 n-1]$. Therefore, we conclude that $k(W(2) n)=n 2-2 n+\ddot{y} 1$.

The following theorem presents the scrambling index of primitive two-colored Wieland digraph with two blue arcs that have the same initial vertex. Theorem 3.4 Let W (2) n be a two colored Wielandt digraph on $n=4$ vertices. If $W(2) n$ has two blue arcs $v n-1$? v 1 and $v n-1$? $v n$, then $k(W(2) n) \ddot{y}=n 2-2 n+\ddot{y} 2$. Proof. We show that $k(W) n)$ $=n 2-2 n+\ddot{y} 2$.

It suf?ces to show that $k v n-1, v n(W(2) n)=n 2-2 n+\ddot{y} 2$. For this purpose we assume that there are $\vee \mathrm{n}(\mathrm{h}, \mathrm{l})-$? w and $\vee \mathrm{n}-1(\mathrm{~h}, \mathrm{l})-$? w for some w ? W (2) n . We set up a lower bound fro $k v n-1, v n(w)$ and consider two cases depending on the position of the vertex w. Case 1.

The vertex $w=v t$ where $1=t=n-1$ There is a unique path $p n, t$ from $v n$ to $v t$ which is $a(t, 0)-$ path. Using this path and (4) we have $q 1=b(C 2) r(p n, t)-r(C 2) b(p$ $n, t)=\ddot{y}(1)(t)-(n-2)(0) \ddot{y}=t$. There are two $p n-1, t$ paths from $v n-1$ to $v t$. They are a ($t-1,1$) -path and $a(t, 1)$-path.

Considering the $(t-1,1)-$ path and (5) we have $q 2=r(C 1) b(p n-1, t)-b(C 1) r($ $p n-1, t)=\ddot{y}(n-1)(1)-(1)(t-1) \ddot{y}=n-t$. Considering the $(t, 1)-p a t h$ and (5) we have q $2=r(C 1) b(p n-1, t)-b(C 1) r(p n-1, t)=\ddot{y}(n-1)(1)-(1)(t) \ddot{y}=n-t-1$. Hence we conclude that $q 2=n-t-1$. Now Lemma 2.2 implies that $[h l]=M[q 1 q 2]=M[$ $t n-t-1]=[n 2-3 n+\ddot{y} 2 \ddot{y}+t n-1]$.

Thus $k \vee n-1, v n(v t)=n 2-2 n+\ddot{y} 1 \ddot{y}+t(10)$ for all $1=t=n-1$. Case 2 . The vertex $w=v n$ There is $a(n-1,1)$-path from $v n$ to $v n$. Using this path and (4) we ?nd that q $1=b(C 2) r(p n, n)-r(C 2) b(p n, n)=\ddot{y}(1)(n-1)-(n-2)(1) \ddot{y}=\ddot{y} 1$. There is $a(0,1)$ -path from $\vee \mathrm{n}-1$ to $\vee \mathrm{n}$.

Using this path and (5) we ?nd that $q 2=r(C 1) b(p n-1, n)-b(C 1) r(p n-1, n)$ $=\ddot{y}(n-1)(1)-(1)(0) \ddot{y}=n-1$. Now Lemma 2.2 implies that $[h l]=M[q 1 q 2]=M[1 n$ $-1]=[n 2-2 n+\ddot{y} 1 n]$. Thus $k v n-1, v n(v n)=n 2-n+\ddot{y} 1$. (11) By considering (10) and (11) we conclude that $k \vee n-1, v n(W(2) n)=n 2-2 n+\ddot{y} 2$ and by (2) we conclude $k(W(2) n)=n 2-2 n+\ddot{y} 2$.

We next show that $k(W(2) n)=n 2-2 n+\ddot{y} 2$. For each vertex $v t, \ddot{y} t=\ddot{y} 1,2, \ddot{y} . \ddot{y} . \dot{y} . \ddot{y}, \not y n$, we show that there is $\vee \mathrm{t}(\mathrm{h}, \mathrm{l})-$? $\vee 1$ walk with $[\mathrm{hl}]=[\mathrm{n} 2-3 \mathrm{n}+\ddot{\mathrm{y}} 3 \mathrm{n}-1]$. By Proposition 2.1 it suf?ces to show that the system of equa- tions $M z+[r(p t, 1) b(p$ $t, 1)]=[n 2-3 n+\ddot{y} 3 n-1](12)$ has a nonnegative integer solution for some path $p t$, 1 from v to v 1 .

The solution to the system (12) is the integer vector $z=[1 \ddot{y}+\ddot{y}(n-2) b(p t, 1)-r(p t$, 1) $n-2 \ddot{y}+r(p t,-1) \ddot{y}+b(p t, 1)-b(p t, 1) n]$. If $1=t=n-1$, then there is $a(n-t$, 1) - path $p t, 1$ from $v t$ to $v 1$. Using this path we ?nd $z 1=t-1$ and $z 2=n-1-t$. Since $t=1$ we have $z 1=0$, and since $t=n-1$ we have $z 2=0$. If $t=n$, then there is a $(1,0)$-path $p n, 1$ from $\vee n$ to $\vee 1$.

Using this path we have $z 1=\ddot{y} 0$ and $z 2=n-1$. Therefore, for each $t=\ddot{y} 1,2, \ddot{y} . \ddot{y} . \ddot{y} . \bar{y}, \ddot{y} n$, the system (12) has a nonnegative integer solution for some path $p t, 1$ from $v t$ to $v 1$. By Proposition 2.1 for each vertex $v t, \ddot{y} t=\ddot{y} 1,2, \ddot{y} . \ddot{y} . \ddot{y} . \ddot{y}, y ̈ n$, there is an (h, \ddot{l}) -walk from vt to $v 1$ with $h=n 2-3 n+\ddot{y} 3$ and $I=n-1$.

We now conclude for each pair of distinct vertices $v i$ and $v j$ there is vertex $v 1$ with the
property that there are $v i(h, I)-? v 1$ and $v j(h, I)-? v 1$ walks with [hI] $=[n 2-3 n$ $+\ddot{y} 3 n-1]$. Hence $k(W(2) n)=n 2-2 n+\ddot{y} 2$. Let $S W(2) n n$ denote the set of positive integers k for which there exists a primitive two-colored Wielandt digraph with scrambling index equals to k.

The following result gives the characterization for the set S W (2) n n. Corollary 3.5 Let $\mathrm{W}(2) \mathrm{n}$ be a primitive two-colored Wielandt digraph on $\mathrm{n}=4$ vertices. Then $\mathrm{S} W(2) \mathrm{n} n$ $=\{k: n 2-3 n+\ddot{y} 3=k=n 2-2 n+\ddot{y} 2\}$. Universal Journal of Applied Mathematics 2(6): 250-255, 2014255 Proof. We note from Theorem 3.2 that [n2-3n+̈̈3, ÿn 2-2n] ? S $\mathrm{W}(2) \mathrm{n} n$ since $1=\mathrm{a}=\mathrm{n}-2$. By Theorem 3.3 and Theorem 3.4
we conclude that [$n 2-3 n+\ddot{y} 3$, $\ddot{n} 2-2 n+\ddot{y} 2$] ? S W (2) $n n$. Since there are only n distinct primitive two-colored Wielandt digraphs on n vertices, we have $S W(2) n n=\ddot{y}[$ n 2-3n + y 3 , $\mathrm{y} n \mathrm{n} 2-2 \mathrm{n}+\ddot{\mathrm{y}} 2$]. REFERENCES [1] M. Akelbek, S. Kirkland. Coef?cients of ergodicity and the scrambling index, Linear Algebra and its Applications, 430, 1111-1130, 2009. [2] M. Akelbek, S. Kirkland.

Primitive digraphs with the largest scrambling index, Linear Algebra and its Applications, 430, 1099-1110, 2009. [3] D.S. Ananichev, M. V. Volkov and V. V. Gusev, Primitive Digraphs with Large Exponents and Slowly Synchronizing Au-tomata, Journal of Mathematical Sciences, Vol. 192 No. 3 (2013), 263-278 [4] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991. [5] E. Fornasini, M. E. Valcher.

Primitivity positive matrix pairs: algebraic characterization graph theoritic description and 2D systems interpretations, SIAM J. Matrix Anal. Appl., 19, 71-88, 1998. [6] B. L. Shader, S. Suwilo, Exponents of nonnegative matrix pairs. Linear Algebra and its Applications, 263, 275-293, 2003.

https://www.researchgate.net/profile/Basudeb_Dhara/publication/277775112_Universal_ J_Computational_Math_23_48-55_2014/links/55732c2608aeacff1ffca1a1.pdf?origin=publ ication_list
2\% - http://www.hrpub.org/journals/article_info.php?aid=1642
1\% -
https://www.researchgate.net/publication/255670757_Primitive_Digraphs_with_the_Larg est_Scrambling_Index
< 1\% - http://www.revolvy.com/topic/Non-negative\ integer\&item_type=topic
<1\% - https://www.sciencedirect.com/science/article/pii/S0024379597000360
<1\% - http://www.tcarts.in/academics/c\ o\ ex/fragilehoney.pdf
1\% - https://talenta.usu.ac.id/index.php/bullmath/article/download/29/50/
$<1 \%$ - https://zdoc.site/dagstuhl-reports-vol-4-issue-11-complete-issue-drops.html <1\% -
https://www.researchgate.net/profile/Han_Cho2/publication/260385617_Competition_in dices_of_strongly_connected_digraphs/links/53ef5e240cf2711e0c42f1ad.pdf?inViewer=0 \&pdfjsDownload=0\&origin=publication_detail 1\% -
https://www.researchgate.net/publication/228516903_Coefficients_of_ergodicity_and_th e_scrambling_index
1\% -
https://www.omicsonline.org/open-access/vertex-exponents-of-twocolored-primitive-ex tremal-ministrong-digraphs-2229-8711-2-137.pdf
<1\% -
https://www.researchgate.net/publication/233098888_Exponents_of_a_class_of_two-colo red_digraphs
<1\% - http://www.sfu.ca/~mdevos/345/homework5_sol.pdf
<1\% - https://ueaeprints.uea.ac.uk/view/year/2008.type.html
<1\% - http://www.tandfonline.com/doi/full/10.1080/00207160802460595
<1\% - http://www.academia.edu/27433360/Exponents_of_nonnegative_matrix_pairs
1\% - https://aip.scitation.org/doi/pdf/10.1063/1.4903624
1\% -
https://www.researchgate.net/publication/275645798_PRIMITIVE_GRAPHS_WITH_SCRA MBLING_INDEX_1
<1\% - https://www.scribd.com/doc/48769464/Graph-Theory-Glossary
<1\% - https://link.springer.com/article/10.1007\%2Fs00453-016-0159-2
$<1 \%$ -
https://www.researchgate.net/publication/220975680_Slowly_Synchronizing_Automata_ and_Digraphs
<1\% - https://core.ac.uk/download/pdf/82232166.pdf
$<1 \%$ - https://rd.springer.com/content/pdf/10.1007\%2F978-3-319-67549-7_15.pdf
<1\% -
https://www.researchgate.net/publication/266861875_On_the_exponent_of_r-regular_pri mitive_matrices
<1\% -
https://www.researchgate.net/publication/260947036_Parameterized_Complexity_of_Syn chronization_and_Road_Coloring
<1\% - https://www.researchgate.net/profile/Yanling_Shao
<1\% - http://iopscience.iop.org/issue/1757-899X/300/1
<1\% - https://www.scribd.com/document/261828957/Micro-Sound
<1\% - https://www.sciencedirect.com/science/article/pii/S1877750317301400
<1\% - https://en.wikipedia.org/wiki/Taylor\'s_theorem
<1\% -
https://www.researchgate.net/publication/266859968_Vertex_exponents_of_a_class_of_t wo-colored_Hamiltonian_digraphs
<1\% - https://groups.google.com/d/topic/rec.puzzles/6XhWHZoJatg
<1\% - https://www.sciencedirect.com/science/article/pii/S0024379509003280
<1\% - http://aip.scitation.org/doi/10.1063/1.4903618
<1\% - https://www.sciencedirect.com/science/article/pii/S0898122110003676
<1\% - http://www.dei.unipd.it/~fornasini/PU_Pos_1997_IRRED.pdf
<1\% - https://www.researchgate.net/publication/220078288_Divisible_design_graphs <1\% -
https://web.williams.edu/Mathematics/sjmiller/public_html/105/hwsolns/HWSolns_Math 105_Sp2013.pdf
<1\% - https://link.springer.com/content/pdf/10.1007\%2Fs000130050330.pdf
<1\% - https://www.sciencedirect.com/science/article/pii/S0022000016300411
<1\% - https://link.springer.com/content/pdf/10.1007\%2Fs002220050259.pdf
1\% - https://core.ac.uk/download/pdf/82585055.pdf
<1\% -
https://www.researchgate.net/profile/Bryan_Shader/publication/228567192_On_2-Expon ents_of_Ministrong_2-Digraphs/links/00463517700f82d06c000000.pdf?inViewer=0\&pdfJ sDownload=0\&origin=publication_detail
<1\% - https://arxiv.org/pdf/1106.5885.pdf?origin=publication_detail
<1\% - http://mcs.uwsuper.edu/sb/Papers/tree.pdf
<1\% -
https://www.coursehero.com/file/p78ia5i/Therefore-we-conclude-that-x-n-x-n-1-QED-L emma-12-The-sequence-x-n-1-1-n-n-is/
<1\% - https://www.sciencedirect.com/science/article/pii/S161686581500028X $<1 \%$ -
http://www.academia.edu/17084693/Channel_assignment_with_separation_for_interfere nce_avoidance_in_wireless_networks <1\% -
https://www.scribd.com/document/360244163/DeMarzo-Vayanos-Zwiebel-Persuasion-B ias-Social-Influence-and-Unidimensional-Opinions
<1\% - https://www.scribd.com/doc/37630200/Graph-Theory-With-Applications <1\% -
https://www.researchgate.net/publication/222358929_Exponents_of_nonnegative_matrix _pairs
<1\% - http://www.cs.yale.edu/homes/aspnes/pinewiki/GraphTheory.html
<1\% - https://www.researchgate.net/publication/239651158_Spiral_light_beams
<1\% - http://algs4.cs.princeton.edu/42digraph/
<1\% - https://academic.oup.com/comjnl/article/51/3/255/407739
<1\% -
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0305004 102006357
<1\% - https://arxiv.org/pdf/math/0312408? origin=publication_detail
<1\% - http://www.math.lsa.umich.edu/~speyer/565/Soln1.pdf
<1\% - https://arxiv.org/pdf/1706.08019.pdf
<1\% - https://arxiv.org/pdf/1709.01633.pdf
<1\% - https://draganstevanovic.files.wordpress.com/2012/09/twocommon-revised.pdf <1\% -
https://www.weber.edu/WSUlmages/assessment/ProgramReview/Mathematics/2012_Fa culty_CVs.pdf
<1\% - https://uclouvain.be/fr/node/1804
<1\% - https://aip.scitation.org/doi/10.1063/1.4965175
<1\% - https://studylib.net/doc/18485654/abstracts---dipartimento-di-matematica

