DAFTAR GAMBAR

Halaman

		Halaman
Gambar 2.	1. Mekanisme kerja dari inofor: (A) pembentuk saluran (Channel) yang masuk ke dalam membran dan (B) melindungi muatan dari lingkungan sekitarnya.	7
Gambar 2.2	 Pengambaran secara 3 dimensi dimana mengambarkan efek induksi senyawa eter mahkota dalam mengikat kation(a) eter mahkota dibenzo - 18 bebas (b) eter mahkota dibenzo -18 yang 	
Gambar 2.3	 menangkap ion K⁺. Gambar Struktur eter mahkota dalam 3 dimensi yang mana Subtituen yang berikatan akan 	10
	mempengaruhi besar jejari kavitas eter mahkota.	11
Gambar 2.4	4. Struktur eter mahkota	12
Gambar 2.	5. Contoh reaksi sintesis pengubahan DC menjadi	
	DTODC.	12
Gambar 2.6	6. Mekanisme reaksi pada antar muka membran	
	dengan larutan	17
Gambar 2.7	7. Skema elektroda selektif-ion (Morf)	19
Gambar 2.8	8. Grafik Penentuan Faktor Nernst dan Daerah Kerja	20
Gambar 2.9	9. Bagan pengukuran dengan potensiometer	
	menggunakan elektroda pembanding dan elektroda	
	indikator dengan larutan yang di uji. (Evans, 1991)	28
Gambar 2.1	10. Spektrofotometri Infra Red (IR)	32
Gambar 2.2	11. Spin Coating	35
Gambar 3.	1. Diagram sintesis DTODC	40
Gambar 3.2	2. Diagram alir pembuatan membran ISE-Hg	41
Gambar 3.3	3. Diagram alir pembuatan elektroda ISE-Hg	42

Gambar 3.4.	Diagram Alir Uji respon elektroda ISE-Hg	43
Gambar 4.1.	Reaksi Pembentukan DTODC dari DC dengan	
	pereaksi 2-thenoyl klorida dan tetrahidrofuran yang	
	berperan sebagai pelarut reaktan	45
Gambar 4.2.	Mekanisme reaksi pembentukan DTODC dari DC	
	dimana pada rea <mark>ksi ini te</mark> rjadi reaksi substitusi	
	atom atau H	45
Gambar 4.3.	Proses kristalisasi	48
Gambar 4.4.	(a)Kristal hasil sintesis pertama,(b)kristal hasil	
	sintesis kedua, (c) kristal hasil sintesis ketiga	49
Gambar 4.5.	(1)Proses pengukuran titik leleh hasil sintesis, (2)	
	ionofor DTODC yang meleleh.	49
Gambar 4.6.	Hasil analisis ionofor DTODC sintesis ketiga di	
	beacukai belawan	52
Gambar 4.7.	(a) proses peletakan membran tanpa ionofor	
	dengan menggunakan alat spin coating, (b)	
	merupakan hasil percobaan membran tanpa	
	menggunakan ionofor dan menghasilkan membran	
	yang baik memiliki warna yang bening dan	
	ketebalannya tipis	55
Gambar 4.8.	(a) Proses Peletakan Membran Ionofor dengan	
	Menggunakan alat Spin Coating dan (b) Proses	
	perataan Membran dengan Menggunakan Ionofor	
	(c) Merupakan Hasil Percobaan Membran dengan	
	Menggunakan Ionofor dan menghasilkan Membran	
	yang Baik Memiliki Warna yang Bening dan	
	Ketebalannya Tipis	56
Gambar 4.9.	Pengujian pipa atau selang PVC yang telah	
	diletakkan membran dibawah bagian pipa atau	
	selang PVC, kemudian selang PVC diisi aquades	

dan dibiarkan selama semalam

X

Gambar 4.10.	Skema Elek	troda ISE-Merku	ri		
Gambar 4.11.	Desain Elektroda ISE-Hg dan penempatannya pada				
	instrumen	Potensiometri	dengan	Elektroda	

Referensi

- Gambar 4.12. Skema Disain Instrumentasi Potensiometri Penentuan Merkuri
- Gambar 4.13. Rancangan Potensiometri Penentuan Merkuri menggu-nakan Ion Selekktif Elektroda sebagai elektroda Kerja,dan Elektroda Ag/AgCl sebagai elektroda pembanding.
- Gambar 4.14. Grafik Potensial ISE-Hg Terhadap Ion Logam Merkuri pada Uji Potensiometri berturut-turut dengan volume 0; 10; 20; 30; 40; 50; 60 µL; dalam Larutan Buffer Posfat pH 5,0 dengan kawat wolfram
- Gambar 4.15. Grafik Potensial ISE-Hg Terhadap Ion Logam
 Merkuri pada Uji Potensiometri berturut-turut
 dengan volume 0; 10; 20; 30; 40; 50; 60 µL; dalam
 Larutan Buffer Posfat pH 5,0 dengan kawat
 Tembaga
- Gambar 4.16. Grafik Potensial ISE-Hg Terhadap Ion Logam
 Merkuri pada Uji Potensiometri berturut-turut
 dengan volume 0; 10; 20; 30; 40; 50; 60 µL; dalam
 Larutan Buffer Posfat pH 5,0 dengan kawat Perak

62

58

xi

58

59

61

63