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ABSTRACT 

This study aims to build a new model of the spread of pulmonary tuberculosis (TB) in 
order to reduce the level of distribution, with the added effect of vaccination models 
susceptible exposed to infection and recovery (VSIR) who had previously built up to 
be a model VSEIR. To test the validity of this model will be proven stability analysis.  
Analysis of both models is conducted using linearization method by studying the 
nature of equilibrium points. Simulation for models using derive parameter values in 
an attempt to study the spread of dengue viruses in North Sumatera. The research 
also aims to find out the value of Reproductive number    over the total of the 
Tuberculosis cases reporting in North Sumatera. Furthermore, a comparison between 
the real data and the numerical solution using the fourth order Runge-Kutta method 
(RK4). To overcome the spread will be tested in the analysis of optimal singular 
control over this VSIR and Susceptible Exposed Infected and Recovery (SEIR) models 
of Tuberculosis, finally, we also proof the optimal singular control for Vaccination 
Susceptible Exposed Infected and Recovery (VSEIR) model.
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CHAPTER I 
INTRODUCTION 

1.1 Background 

Tuberculosis (TB) is a bacterial disease acquired through air bone infection. 

Mycobacterium tuberculosis (MTB) is the causative agent of tuberculosis. TB 

disease can affect anyone (old, young, men, women, poor, or rich) and anywhere. 

TB disease is usually transmitted through contaminated air with Mycobacterium 

tuberculosis bacteria that are released during coughing TB patients, and in 

children the source of infection is generally derived from adult TB patients. These 

bacteria often enter and when accumulated in the lungs will breed a lot (especially 

in people with a low immune system), and can spread through the blood vessels or 

lymph nodes. That is why TB infection can infect virtually all body organs such 

as the lungs, brain, kidneys, gastrointestinal tract, bone, lymph nodes, etc., 

although the organs most commonly affected are the lungs [1]. Each year, 

Indonesia increased by a quarter of a million new TB cases and approximately 

140,000 deaths occur each year due to tuberculosis. In fact, Indonesia is the third 

largest country with the problem of tuberculosis in the world [1]. According to the 

World Health Organization, one –third the world’s population is infected, either 

latently or actively with tuberculosis [2].  

During the year 2010, around 73.8 percent of TB patients are in North 

Sumatra. Based on a survey of these, Medan city is the largest number of 

sufferers. In general, the detection rate of TB case increased in North Sumatra. 

According to the North Sumatra Department of Health  in 2005, we estimated that 

at 15,517 cases of TB sufferers and in 2010 as many as 15,614 TB-positive people 

in North Sumatra, while based on the estimated, it amount to 21 148 people. 

Based on data from the Department of Health in 2010 there are six districts/ cities 

in North Sumatra in 2010 with the highest number of patients based on the 

population in Medan around 2,397 patients, Siantar  around 288 patients, Binjai 

around  260 patients, Tanjung Balai around 150 patients, Tebing Tinggi around 

145 patients and Deli Serdang around 1,554 patients [3]. 

Immunization is considered important because it has some benefits for 

toddlers, such as preventing the spread of Tuberculosis. BCG immunization was 

file:///D:/VSEIR/SLIDE%20LAPORAN%20PERTAMA.pptx
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given 1 month of age giving one the benefit prevent transmission of tuberculosis 

(TB) are heavy. "If the baby is not complete immunized under the age of one year 

as BCG has not given, it must be done if the test maontoux baby five months of 

age or older. This test is to determine whether the baby is negatively affected by 

TB. If the test result is negative, it can only be given BCG immunization [1].  

Despite some successes associated with the use of BCG vaccine and some TB 

treatment therapies, this pandemic has continued to increase and has led to a 

growing consensus that new control strategies will be needed for disease 

eradication. The optimal control has a long history of being analysed to problems 

in epidemiology problems. Bowong [4] control a tuberculosis model indicating 

how a control term on the chemoprophylaxis should be introduced in the 

population to reduce the number of individuals with active TB. Yang et al. [5] 

focus primarily on controlling the disease using an objective function based on a 

combination of minimizing the number of TB infections and minimizing the cost 

of control strategies. In this work, main emphasis is on a complete analysis of the 

optimally properties corresponding to trajectories. There controls are natural 

candidates for optimally and are widely used in medical treatment were a 

maximum dose of treatment is given repeatedly with breaks in between. We 

develop simple and easily verifiable conditions which allow us to determine the 

locally of bang-bang control. In this paper, we investigate the optimality singular 

controls of SEIR models of tuberculosis with vaccination and treatment 

theoretically. These are controls correspond to time-vary the vaccination and 

treatment schedules. 

The mathematical model for tuberculosis found that compartmental 

dynamics such as Susceptible, Infected, Removed with vaccination (VSIR) [4]. 

Since the disease can remain latent, become active, or it can progress from laten 

TB to active TB either by endogenous reactivation or exogenous reinfection [5]. 

Based on previous statement, we modify [4] and adopts the class Exposed (E) to 

VSIR model. Thus, this paper will discuss about formulation of model, analysis 

and simulation using the fourth order Runge Kutta (KR4). 

Many researchers have researched about this TB, for example, Nyabadza 

and Kgosimore (2012) have formulated a model for the TB compartment with two 
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age classes, namely: children and adults. Qualitative analysis was conducted to 

determine the stability of the model equilibrium models in terms of the model 

reproduction number   . Numerical simulations are also performed to investigate 

the role played by several key epidemiological parameters in the dynamics of the 

disease. Ozcaglar et al (2012) have created a model that simulates the dynamics of 

tuberculosis transmission, treatment, drug resistance, control strategies to improve 

adherence to treatment, HIV/ TB co-infection, and patient groups. Abdulkarim 

(2007), examines the dynamics of age-structured models of the transmission of 

TB transmission along the lines of classical McKendrick-Foerster, age-structured 

population models are based on several assumptions which contradicts the 

assumption castillo-chaves depending on the age and age-dependent mortality rate 

of contact, vaccination and treatment, will be removed and quarantine infected to 

non-disease caused death. Tome and Oliveira (2011), a model susceptible-

Infected-Recovery (SIR) and susceptible-exposed-infected (SEI), studied on the 

Cayley tree of coordination number  . The spread of the disease in the formation 

was found to occur when a greater chance of infection b                   , 

which is equivalent to a dynamic site percolation models, the spread of infection 

occurs when opportunities   greater than                  .  
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CHAPTER II 
LITERATURE REVIEW 

 
In a study of the spread of epidemic dengue fever, and SIR and SEIR models 
approach has been used. These model are expected to be able to know the number 
of hosts infected with the epidemic, the number of hosts recovered, the number of 
hosts recovered, the number of mosquitoes that become suspect, the number of 
hosts infected with the virus show symptoms denggi and the number of people 
potentially infected with dengue virus. 

 
2.1. Susceptible Infected Recovery (SIR) 
Susceptible Infected Recovery (SIR) was first introduced by Kermack and 
Kendrick in 1927. At the SIR model, the human population is divided into three 
groups, namely susceptible or vulnerable to the symbols  , infected or infected 
symbolized by the   and recovery or recovered symbolized by  .  Total number of 
such groups is        . Here,   or     modelling is susceptible to uninfected 
individuals but groups can be infected with the disease.  Therefore, this group also 
has the possibility to be infected ( ). I or an infected individual can spread the 
disease in susceptible individuals. The time required by patients with infectious 
disease is called the period of the disease, after a period of illness then 
individually moved and become individuals who recovered or recovered. 
Meanwhile, recovery individuals   have been recovered or immune from the 
disease. 

SIR model is written in the form of ordinary differential equations (GDP), 
which is one part of a deterministic model, with continuous time. The analogy is 
similar to the reaction kinetics, which can be assumed to be infected and 
susceptible individuals change occurs at a rate proportional to the population size. 
The rate of change of new infected individuals defined as       , with   a 
transmission value while the value of   is the rate of healing. Infected individuals 
are assumed to be recovered with a constant probability all the time. Which then 
changes constantly with the rate of healing per capita is denoted as   and 
symbolized as    entirety. Based on this assumption, then we can form a model 
scheme as follows. 
  
 
 
 
 

Figure 1. Schematic of the SIR model 
 
The diagram can be constructed in the following differential equation: 

  

  
      

(1) 

  

  
        

(2) 

S 𝛼𝑆𝐼 I R 𝛼𝑆𝐼 
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(3) 

These equations describe the individual transitions from S to I and then to R. By 
adding these three equations this equation can easily be shown that the total 
population is constant. 
 
2.2. Susceptible Exposed Infected Recovery (SEIR) 

SIR model discussed above is by simply taking into account the types of 
diseases that can infect other people after they are infected. Many diseases have a 
latent or open phase, wherein said individual is infected but not contagious. For 
example measles, there is a period of about seven to eight days that a person is 
exposed, while the virus multiplies. After this period, the individual will 
experience a cough and mild fever. At this point the individual is said to be 
infected and contagious. In such cases it is necessary to describe the different 
models of the situation, ie, with the addition of individuals exposed or latent. In 
this section SEIR models including birth and death will be explained along with 
the exploration of differential equations that describe the flow from one class to 
another. The flow of this model can be considered in the diagram below. 
 
 
 
 
 
 

 
 
 
 

Figure 2. Scheme of SEIR Model 
 
In this model the population (N) is divided into four classes: susceptible, exposed, 
infectious,and recovered, the number of individuals in the class, or their density is 
represented by each                        , we have: 

                      (4) 
Prior to directly explore the dynamics equations considered susceptible 

class (S (t)). Initially, S(t) is considered the entire population (N). In such cases 
the population S (t) increases with the birth rate (b), but decreased with the death 
of one person. The degree to which individuals die at the rate of mortality (μ) 
times the number of susceptible individuals. Upon contact with an infectious 
individual, a small fraction of S (t) moves from class to class vulnerable open. 

  

  
          

 
(5) 

The next three differential equations can be viewed in the same way, with 
people entering the class/ compartment from the previous, and left the 
compartment to move on to the next compartment, or die. 

  

  
            

(6) 

S E I R 

Birth 

Death 
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(7) 

  

  
       

(8) 

where                                        
 
 
 
2.3.Vaccination Susceptible Infected Recovery (VSIR) 

Models for the spread of tuberculosis by Vaccination susceptible Infected 

Recovery (VSIR) was created by Momoh et al (2012). The model has been 

divided into four classes, namely population: The infantry passively immune, 

susceptible, Infected, Recovery. The model is described as follows:  

        

  

 

 

 

 

 

 

 

Figure 3. VSIR Model 

Individuals who put in classes   through a natural birth at a rate   through 

passive vaccination,   population declined because of natural mortality at rate   

and the individual moves to   as a result of the use of passive vaccination rate  . 

  population increased due to the arrival of individuals from classes   and   at 

rate   and  .  -class population decline due to the movement of individuals into 

classes that are infected at rate   and the natural death rate  . Population   

declined because treatment for TB at rate   and the natural death rate   and deaths 

from TB infection rate  . A population increase due to the movement of 

individuals at rate   of   and decreases due to the movement of individuals to   

and   in the rate of natural mortality at rate  . The model described above then 

become ordinary differential equation as follows: 

V S I R 
𝛼 𝛽 𝛾 

𝜇 𝜇 𝜇 𝜇 

𝑄 

𝜑 
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where 

   Natural birth rate 

   passive immunity infants at time   

   Susceptible class when the time   

   Infected class at time   

   Recovery class at time   

   Natural mortality rate 

   Rate efficiency duration of vaccine 

   TB contact rate 

   Deaths from TB infection 

   Rate of duration of vaccine efficiency 

   Rate in which the individual becomes vulnerable 

 
2.4.Maximum Principle  

Theorem 1. () (Pontryagin Maximum principle (PMP) for linear time optimal 

problem) Assume the domain of  control   to bea compact, convect subset of     

An admissible control      and its corresponding trajectories      both defined 

on [     ] extermal if only if ther are exist non zero absolutely continuous vector 

     solution of adjoint equation 

 ̇                 a.e. on [     ] (9) 

 

Such that  

                
   

          (10) 

 

 Such vector is called a an adjoint vector. 
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Proof.  Assume      to be the extermal trajectories corresponding to the extremal 

control      both defined on [     ]. By definition we have               

where       is written as 

         (   ∫                 
 

  

) 
(11) 

The accessibility set          is compact and convex and since               , 

there are exists a support hyperline   to        at      . Let  ̅ be a non zero 

normal row vector to   at       outward with respect to        . Let      be 

defined for          by        
      ,        ̅. We have 

              ∫                
 

  

 
(12) 

Le us assume that there exits a subset of [     ] of non zero measure such that for 

all   in this subset we have 

                
   

          (13) 

 

Using Filippov selection Theorem, we can define a measurable control  ̂    

satisfying a.e. on          

         ̂       
   

          (14) 

Let  ̂    be the trajectories associated to  ̂   . We have  

     ̂         ∫          ̂      
 

  

 
(15) 

Moreover, by construction of  ̂    and from (12) the following inequality holds:  

∫               
 

  

          ̂       
(16) 

Hence we deduce that  

                 ̂     (17) 

This contradicts the fact that               and that       is outward normal to 

  at      . Therefore we must have a.e.  

                
   

          (18) 

  Conversely, if      satisfies a.e. the equality  

                
   

             (19) 
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We show that                Indeed assume that                  . 

Therefore there exists  ̂          such that 

                 ̂  (20) 

Let      Be a control defined on [     ] steering    to  ̂  and  ̂    the 

corresponding trajectory. It follows that  

          ̂                    a.e. (21) 

 Hence, by computing we get 

      ̂           ̂             (22) 

Which contradicts to the inequality (19). 

2.5.Determination singular extremal  

Let      ,         be a singular extremal defined on [   ]. By definition it is a 

solution a.e. on [   ] of the following equations: 

 ̇     (    )          ,          ̇         (
  

  
(    )  

    
  

  
(    )* 

(23) 

And it is contained for each   in the set    

   {      〈      〉   } (24) 

Since        is an absolutly continuous in curve   , differentiating   

〈            〉   , one gets 

〈     [   ]      〉     (25) 

a.e. on [   ], where the Lie bracket is computed with the convention  

[     ]    
   

  
         

   

  
          

(26) 

 Since               is continuous, the curve        is contained for each 

  [   ] in the set 

   {         〈       [   ]      〉   }  (27) 

Hence, differentiating   〈       [   ]      〉   , we get the relation  

〈     [[   ]  ]      〉      〈     [[   ]  ]      〉     (28) 

 For almost every   [   ]. 

This last relation allow us to compute      in many cases and justifies the 

following definition.  
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Definition 2. () For any singular extremal      defined on [   ]         will 

denote the set {       〈     [[   ]  ]      〉}     The set        possibly 

empty is always an open subset of [   ]  

Proposition 3.  Let      be singular extremal  defined on [   ] and assume that 

       not empty. Then  

1. For a.e.            

      ̂(    )   
〈     [[   ]  ]      〉

〈     [[   ]  ]      〉
 

(29) 

2.   restricted to        is smooth and is solution for every t of the 

equations: 

      (    )   ̂                ̇  (30) 

 ̇         (
  

  
(    )   ̂      

  

  
    * 

(31) 

 

Proposition 4.  Let (       )be a controlled trajectory of the system and let   be 
a solution to the corresponding adjoint equations. Given a continuously 
differentiable vector field h, define  

     〈      (    )〉 (32) 
Then the derivative of     is given by  

     〈     [           ](    )〉
̇  (33) 
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CHAPTER III 
OBJECTIVE OF THE RESEARCH 

 
3.1. Objective of the Research 

The general objective of this research is to create a new model of the 

spread of TB disease in the exposed class which is considered in VSIR, in order to 

reduce the diffusion rate. While the particular purpose is: 

1. Make epidemiological models VSEIR  

2. Proving the stability of the model VSEIR  

3. Implementing Model VSEIR to obtain the amount of spread of disease. 

4. Calculating the spread of disease from the model optimization VSEIR 

 

3.2. Urgency 

As the background that TB disease is still a disease that is a health issue 

and the attention of the world and an increase in TB cases in North Sumatra, this 

study should be implemented to avoid casualties died and many more of course to 

reduce treatment costs to be borne by the government and society.  

 

3.3.Innovation Finding 

Pada penelitian kali ini, model baru diperoleh dari pengembangan model 

yang dikemukakan oleh Momoh et al. (2012) yaitu Vaccination Susceptible 

Infected Recovery (VSEIR), disamping itu juga akan diuji stabilitas dari model 

akan diperoleh optimasi dari jumlah penyebaran penyakit Tuberculosis tersebut. 
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CHAPTER IV 
METODOLOGY 

 

 In previous studies, mathematical modeling of the spread of tuberculosis 

and vaccine effect using a model Vaccination Susceptible Infected Recovery 

(VSIR) has been introduced by Momoh et al in 2012. They have to model the case 

of TB with multiple steps: 

1. First Step 

The simplest model to build a model of the dynamics of the spread of tuberculosis 

is susceptible-Infected-Removed (SIR). In 1927,Kermack and McKendrick make 

them consider a model where fixed by simply dividing the population into three 

components, namely susceptible     , infected     , and removed the     . In this 

study, the SIR model will be reviewed again as the basic theory of the formation 

of a new model. 

2. Second Step 

For the second step, the model VSIR reviews back as the theoretical basis for the 

model to be created. For VSIR, the population of TB population is divided into 

four classes, namely: passively immune infant ( ), susceptible ( ), Infected ( ), 

Recovery ( ). The model is described as follows:  

        

 

          

 

 

 

 

 

 

Figure 4. VSIR Model 

Individuals who put in classes V through a natural birth at a rate Q through 

passive vaccination, V population declined because of natural mortality at rate μ 

and the movement of individuals into S as a result of the use of passive 

V S I R 
𝛼 𝛽 𝛾 

𝜇 𝜇 𝜇 𝜇 

𝑄 

𝜃 
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vaccination rate α. S population increased due to the arrival of individuals from 

classes V and R at rate α and θ. S-class population decline due to the movement of 

individuals into classes that are infected at rate β and the natural death rate μ. 

Population I declined because treatment for TB at rate γ and the natural death rate 

μ and deaths from TB infection rate φ. A population increase due to the 

movement of individuals at rate γ of I and decreases due to the movement of 

individuals to θ and S in the rate of natural mortality at rate μ. 

Here,   is the rate of natural birth,   passive immunity infants at time  , 

S is a susceptible class at time  ,   is the class Infected at time  ,   is the class 

recovery at time  , the natural death in rate  . Rate α is efficient duration of 

vaccine TB contact rate β  Deaths from TB infected in rate φ. Rate γ is the 

duration of vaccine efficiency, θ is rate which individuals become susceptible. 

The model described above then becomes the following ordinary differential 

equation: 

  

  
           

  

  
                

  

  
               

  

  
            

 

3. Third Step  

In the model of SEIR, the population is divided into four subclasses, namely the 

class of vulnerable populations (susceptible ( )), class infected population 

(Exposed ( )), the class population is infected (Infected ( )), and a class of 

population recovery (Recovery ( )). Then   states the proportion of susceptible 

individuals at time  ,   states the proportion of individuals infected at time  ,   

states the proportion of individuals infected at time  , the proportion of individuals 

  declared cured at the time  , and   denotes the total proportion of individuals. 

The parameter used is   declare the birth rate, death rate   naturally stated, 

the contact rate   states, states healing rate  , and   expressed individual rate 
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class to class  , the value of             . The number of individuals in the 

class of susceptible ( ) decreased by the transmission of the disease,           

and natural mortality,     and increases due to births,   . Number of Individuals 

Exposed to the class ( ) decreased by natural death    , and  class   goes to 

classes Infected ( ), and increased as a result of disease transmission           

number of individuals in class Infected ( ) have declined with natural mortality, 

    and individuals who recovered,     and increased as a result of individuals 

coming from class  . the number of individuals in the class  .    decreases due 

to natural mortality, and increases as the individual has recovered,    . Based on 

the above, made transfer diagram as follows: 

 

 

 

 

 

 

Figure 5. SEIR Model 

 

Mathematical model based on the transfer diagram above as follows: 
  

  
      

 

 
   

 

  

  
 

 

 
          

 

  

  
           

 

  

  
       

 

where:                                        and          

    

 

4. Fourth Step  

Formation of a new model taking into account the exposed class ( ) on the 

previous models Vaccination Susceptible Infected Recovery (VSIR) introduced 

𝛽𝑆𝐼

𝑁
 

𝛿𝐸 𝛾𝐼 𝑏 
S E I R 

𝜇𝑆 𝜇𝐸 𝜇𝐼 𝜇𝑅 
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by Momoh et al. (2012). Momoh et al. (2012) have incorporated individuals into 

classes   through the natural birth rate   through passive vaccination,   

population decline due to natural mortality at rate μ and the movement of 

individuals into   as a result of the use of passive vaccination rate  . The 

parameters used are   declare the birth rate, death rate   naturally stated, the 

contact rate   states, states healing rate  , and   expressed individual rate class to 

class  , the value of             . 

The number of individuals in the class of susceptible ( ) decreased by the 
transmission of the disease,           and natural mortality,     and increases due 
to births,   . Number of Individuals Exposed to the class ( ) decreased by 
natural death    , and   class goes to classes Infected ( ), and increased as a 
result of disease transmission           number of individuals in Infected class ( ) 
have declined with natural mortality,     and individuals who recovered,     and 
increased as a result of individuals coming from class. The number of individuals 
in class    decline due to natural mortality, and increases as the individual has 
recovered,   . Based on the above, the following transfers were made diagrams: 

 

 

 

 

 

 

Figure 6.  VSEIR Model 

 

5. Fifth Step 

Determination Equilibrium point, eigenvalues and reproductive numbers by using 

the definition.  

6. Sixth Step 

Stability proving using theorem 2.1 and theorem 2.2 

7. Seventh Step  

Determining control optimization using geometric optimal control theory methods 
to analyse the relationship between the vaccination and the optimal treatment 
schedule applied. Overall, this study measures fishbone is written using the 
following: 
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Figure 7. Fishbone Diagram 
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CHAPTER IV 
RESULT AND DISCUSSION 

4.1. Formulation of Model 
The total population size      is divided into four distinct epidemiological 
subclasses of individuals which are vaccination, susceptible, infectious, and 
recovered, with sizes denoted by                 and     , respectively. Thus, 
     can be written as                                  The VSIR model 
[4] having vaccination, infected and recovered period is described by the 
following system of differential equations: 

  

  
             

(34) 

  

  
                   

(35) 

  

  
                    

(36) 

  

  
              

(37) 

 

where human birth in natural through passive vaccination (    ) at rate  , non 
negative parameters                  denote as natural death of population of the 
 , the  , the   and the  , respectively. Population of infected Tuberculosis died in 
rate    . The susceptible population decreased due to coming individual from the 
  in rate   .    denotes the transfer rate from susceptible to infected population. 
Infected population increases due to movement of individuals from infected 
individuals   in rate     dan  decreased due to movement of individuals in to the S 
at rate  . In this paper, we assume that human recovering is fully recovered. In 
flow of mathematical model, we assume that each compartment occurs interaction 
between classes. Hence, Eqs (1)-(4) can be  written as 

  

  
              

(38) 

  

  
                

(39) 

  

  
                   

(40) 

  

  
          

(41) 

 

Here, we assume that all new birth got BCG vaccination. Using a compartmental 
approach, one may assume that a susceptible individual first goes through a latent 
period (and is said to become exposed or in class     ). The exposed individual 
increases from susceptible individuals in at rate   and decreases in rate   and    
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couse of death. Then, any interaction between exposed and infected in rate    The 
exposed population The VSEIR model having infectious force, infected and 
recovered period is described by the following system of differential equations: 

 

  

  
              

(42) 

  

  
               

(43) 

  

  
              

(44) 

  

  
                   

(45) 

  

  
          

(46) 

with conditions  

                       (47) 
where the positive parameters                and    are the rate of natural death 
of vaccitaion individual       , susceptible individual (    ), exposed individual 
      , Infected individual        and recovery individual       , respectively.   
denote the rate of natural birth through passive vaccination. The model can be 
simplified by assuming the following fractions [6] 

  
 

 
      

 

 
      

 

 
       

 

 
   and   

 

 
  (48) 

 

Thus, the model for human populations can be simplified as follows 

 

  

  
             

(49) 

  

  
               

(50) 

  

  
              

(51) 

  

  
         

(52) 

  

  
          

(53) 

 

where              . 
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4.2. Stability Analysis 
4.2.1. Disease Free Equilibrium (DFE) 

Critical point will occur while the value of 

  

  
 

  

  
 

  

  
 

  

  
 

  

  
    

 
(54) 

Substitute (49)-(53) in to Eq. (54)  as follows 

               (55) 
                 (56) 
               (57) 

          (58) 
           (59) 

Inserting Eqs. (55)-(58) into Eq. (59) indicates the equilibrium point of the system 
are: 

   (
 

  
         ), and                     with values 

   
  

  
    

        

    
                     

 
(60) 

 

Linearization of Eqs. (49)-(53) on the equilibrium points (  

  
         ), yields 

the following equation 

(

 
 
 
 
 
 
 
 

   

   
   

   
   

   
   

   
   

   )

 
 
 
 
 
 
 
 

 

(

 
 
 
 
 

   

  

  
   

 
   

  
      

       

      

        )
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 )

   

 
 
 
 
 
 
 
 
(61) 

 

Using MAPLE, Eq (61) leads to five eigenvalues equations as follows: 
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(62) 

with eigenvalues 

  

      
  

  
        

  
  

                       (63) 

 

4.2.2. Epidemic Equilibrium State 

Linearization of Eqs (49)-(53) on the equilibrium point                  yields 
the following equation: 

  

(

 
 
 
 
 

  

  
  

  
  

  
  

  
  

  )
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 )

   

 
 
 
 
 
 
 
 
 
(64) 

Using MAPLE, Eq (64) leads to five eigenvalue equations as follows 
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(65) 

 

with eigenvalues 

    
    √    

        
       

 

   
         

  
    √    

        
       

 

   
         

 
 
 

    
                 

    
                        

 
(66) 

 

Since                                                  then it is 
asymptomatically stable. 

4.2.3. Equilibrium point of VSEIR model for North Sumatera Indonesia 

Parameters of this model are variously determined. Some parameters are taken 
from annually Health fact [1] and supplement data from previous study by 
Momoh et al. [4]. The parameter is known as                  
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                                                         and 
          The equilibrium points were determined using VSEIR model with set 
parameters for the state of north Sumatera.     

  

  
                    

(67) 

  

  
                         

(68) 

  

  
                       

(69) 

  

  
                 

(70) 

  

  
              

(71) 

 Then to obtain the critical point, Eqs. (67) to (71) are equal to zero, as below 

                      (72) 
                          (73) 
                         (74) 

                  (75) 
               (76) 

The equilibrium points of VSEIR model are 

                                       (77) 
 and 

                                              (78) 
  
The second equilibrium points are                                 , 
whereas, other points are not logic for equilibrium points because any negative 
point indeed. By using MAPLE, the eigenvalue     are investigated; as follow: at 
equilibrium point               , eigen values                         

              and            At equilibrium point 
                                 has eigen value, such as    

                                                 

               and                   

4.2.4. VSEIR model for stability analysis in North Sumatera Indonesia 

Result of VSEIR model in searching the equilibrium point and eigenvalues are 
discussed in Table 1. Based on the table, the equilibrium points of VSEIR model 
in North Sumatera is saddle points. It indicates that no occurrence of infected 
Tuberculosis since there are no infected human when 1.11 human are suspected of 
TB. Every human in the population are health and there aren't human that infected 
by virus. 

 



 

23 

  

Table (1). Equilibrium points and Stability Analysis 

Equilibrium points             Eigen values Stability analysis 
               Real and opposite 

sign 
Saddle point 

                                 Real and opposite 
sign 

Saddle point 

 

4.2.5. VSEIR Model of tuberculosis in North Sumatera 

 

Several investigations have done for VSEIR model of Tuberculosis in this paper. 
This model is suitable for the state of North Sumatera. Some parameters are taken 
from annually Health fact [1] and supplement data from previous study by 
Momoh et al. [4]. The parameter is known as                  

                                                       and 
          The initial polulation is reported by health department of North 
Sumatera [3]. Table 1 show the stability analysis looking from equilibrium and 
eigenvalues. From table, all equilibrium points were saddle point. Determining a 
breeding rate on VSEIR is important in Epidemiology problem since this rate 
shows the infected population will occur in main state. The determination of     
was proposed by [7].      implies that endemic steady state is stable and the  
infection for a population.      implies that the uninfected steady state is 
stable. The other hand, the tuberculosis infects an individual, if     , otherwise.   

   
           

            
 

 
(79) 

 

A simulation carried out using MAPLE. Stability analysis tended to 
asymptotically stable. Illustration of the dynamics of each epidemic giving in 
Figure 1(a) and 1(b).  Figure 1a shows the  probability of vaccination, susceptible, 
exposed, infected and recovery individuals that have      .  It shows that North 
Sumatra is free disease area of TB. Otherwise, in Figure 1 ( b),     , it 
indicates North Sumatera is epidemic area of TB. 
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(a) dynamic system for      (b) dynamic system for      
 

Figure 8. Transmission of Tuberculosis with initial condition 

 
4.3. Formulation As An Optimal Control Problem of SEIR Model 

 
The epidemiology model is of type SEIR [4] which has four classes. The class, S 
represents the susceptible who do not have the disease, E represents the exposed 
who are infected but are yet to show any sign of symptoms, I represents the 
infective who have the disease and can transmit it to others, R, denotes the 
recovered class of those who went through infection and emerge with permanent 
or temporary infection-acquired immunity.  In this paper, we only consider an 
SIER model [1]. We assume that the treatment in rate  , the recruitment due to 
immigration in rate  , the slow and fast progression in rate        respectively was 
omitted. The immunity in the class R may not be permanent and the class R 
should be followed by the class S of individuals who regain their susceptibility 
when temporary immunity ends. 

Let      represent the number of susceptible individuals,      represent 
exposed individuals,      the number of infective ones and      the number of 
recovered ones, all at time. We also denote the total number of individuals by 
           , and in [4] assume that all new births enter the susceptible 
class  . Therefore we consider the following dynamics: 

 ̇           (80) 

 ̇          (81) 

 ̇                  (82) 

 ̇                (83) 

Thus, the controlled mathematical model is written as follow 

 ̇               (84) 
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 ̇             (85) 

 ̇                     (86) 

where  , represents the rate of recruitment of susceptible individuals,    , 
represents the loss of the number of susceptible individuals that are being infected 
by individuals from class   with the parameter   standing for the average number 
of adequate contacts ( i.e., contacts sufficient for transmission ) of a person per 
unit of time.  

The last term of equation (84),    represents the effect of vaccination, and 
it is assumed that vaccination removes the fraction    of individuals from the 
class   and makes them resistent. In equation (85), the   decreased by natural 
death of the   , and individual class   to class is infectious     and increased as a 
result of disease transmission    , the last term   , represents the effect of 
vaccination of  . The variabel   is a control that represents the rate at which 
susceptible individuals are vaccinated. It takes values in a compact interval, 
        . In the  , Eq. (86)    represents detection rate of TB . The 
additional outflow    is related to the cure of infected individuals due to treatment 
and   represents the rate at which infectious individuals are treated at each time 
period, the second control in the model with values in the interval      

    . 

Thus there are two possible mechanisms as controls: immunization of the 
susceptible and exposed individuals and treatment of the infected ones. These 
actions are modelled by the two controls   dan   that for mathematical reasons 
are taken as Lebesque-measurable functions. The action of both controls enriches 
the class   of the recovered individuals by removing them from the class of 
susceptible and infected ones, respectively. The class   is defined as       

   . For the model to be realistic, we need to make sure that all the variables 
including   remain positive. The initial numbers of individuals in each of the 
populations are positive numbers denoted by  

       ,         ,          and           (87) 
Note that if there are no infected individuals initially,    ,   remains identically 
zero. The model, thus don’t represent the on the set of infection, but only its 
course. From biological considerations, a closed set  

  {                               }  
where   , denote the non-negative cone and its lower dimensional faces. It can be 
verified that   is posively invariant with respect to (1-4). We denote by    and  ̇ 
the boundary and the interior of  . 
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Let the population sizes of all there classes,          and   are given, find the 
best strategy in terms of combined efforts of vaccination and treatment that would 
minimize the number of people who die from the infection while at the same time 
also minimizing the cost vaccination and treatment of the population. 

In this paper, we consider the following objective for a fixed terminal time  : 

      ∫                         

 

 

 
 

(88) 

The first term in the objective,       represents the number of exposed who are 
infected but are yet to show any sign of symptoms at time  ,      , represents the 
number of people who are exposed and infected at time    and are taken as b 
measure for the deaths associated with the outbreak. The terms,       and        
represent the cost of vaccination and treatment, respectively, and are assumed to 
be proportional to the vaccination and treatment rates. 

We shall apply methods of geometric optimal control theory to analyze the 
relations between optimal vaccination and treatment schedules. These techniques 
become more transparent if the problem is formulated as a  Mayer –type optimal 
control problem : that is , one where we only minimize a penalty term at the 
terminal point. Such a structure can easily be achieved at the cost of one more 
dimension if the objective is adjoined as an extra variable. Defining 

 ̇                                                . (89)                                      
We therefore consider the following optimal control problem. For a fixed terminal 
time  , minimize the value      subject to the dynamics 

 ̇  ̇                       (90) 
 ̇                      (91) 
 ̇                     (92) 

  ̇                            (93) 
 

Over all Lebesque measurable function 

  [   ]  [      ]   and        [   ]  [      ] 

Introducing the state   ̇             , the dynamics of the system is a multiinput 
control-affine system of the form 

 ̇                      (94) 
with drift vector field       given by 

     (

     
        

      

              

,  

 
 
 
(95) 

and control vector fields    and    given by  



 

27 

  

   (

 
  
  
 

)       and           (

 
 
 
  

). 
 
 
(96) 

We call an admissible control pair       with corresponding solution    a 
controlled trajectory of the system. 

4.4. Necessary Conditions For Optimality of SEIR Model 
First-order necessary conditions for optimality of a controlled trajectory by 

the Pontryagin maximum principle [4,15] : For a row-vector   
                    

   , we define the Hamiltonian               as the 
dot product, 〈    〉  of the row vector     with the column vector that defines the 
dynamics, that is  

  〈                    〉  
                                     

              
                      .  

 
 
(97) 

Then, if         is an optimal control defined over the interval [   ] with 
corresponding                               trajectory                 

 , there exists an 
absolutely continuous co-vector,   [   ]       , such that following conditions 
hold [6]  

      satisfies the adjoin equation ( written as row vector and with     and       
denoting the Jacobian matrices of the partial derivatives ) 

 ̇                                  (98) 
with terminal condition  

     (
 

 
      * (99) 

 (b) for almost every time    [   ] the optimal controls (           ) minimize 

the Hamiltonian along (          )  over the control set [      ]  [      ] 

and,  

(c) the Hamiltonian is constant along the optimal solution. 

We call a pair (       ) consisting of admissible controls       with 

corresponding trajectory   for wich there exist multipliers   such that the 

conditions of the Maximum Principle are satisfied an external (pair) and the triple 

            is an external lift. Note that the dynamics does not depend on the 

auxiliary variable   and thus by the adjoint equation (6) the multiplier    is 

constant; by the terminal condition (20) , it is thus given by       
 

 
. In 
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particular, the overall multiplier      is never zero. For almost any time  , the 

optimal controls (           ) minimize the Hamiltonian                   

over the compact interval [      ]  [      ]. Since   is linear in the controls, 

this minimization problem splits into separate one-dimensional problems that can 

easily be solved. Defining the so-called switching functions     and     as 

      〈       (     )〉               (100) 
and 

      〈       (     )〉               (101) 
It follows that the optimal controls satisfy 

      {
                              
                         

          and             

      {
                          

                           
 

The minimum condition alone does determine the controls at times when       

  if            , but         , then the control switches between the value 0 
and its maximum value depending on the sign of    ̇    . Controls with this 
property are called bang-bang controls and we refer to the constant controls with 
values in the endpoints of the control intervals as bang controls. The other 
extreme occurs when a switching function vanishes over an open interval. In this 
case also derivatives of         must vanish and this typically allows to compute 
such a control. Controls of this kind are called singular [6]. While the name might 
give impression that these controls are less important, quite the contrary is true. 
Singular controls (if they exist) tend to be either that best (minimizing) or the 
worst (maximizing) strategies and in either case they are essential in determining 
the structure of optimal controls. This typically needs to be synthesized from bang 
and singular controls through an analysis of the switching function. Thus singular 
controls generally play a major role in a synthesis of optimal controlled 
trajectories and this paper we analyse their existence and local for the problem in 
Eqs. (90)-(93). 

An essential tool in this analysis is the Lie bracket of vector fields which 
naturally arises in the formulas for the derivatives of the switching function. Give 
two differentiable vector fields    dan   defined on a common open subset of    , 
their  Lie bracket  can be defined as  

[   ]                        (102) 
The Lie-bracket is anti-commutative, i.e.,[   ]   [   ], and for arbitrary vector 
fields     and   it satisfies the Jacobi identity [5] 
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[  [   ]]  [  [   ]]  [  [   ]]    (103) 
The following result provides an elegant and important framework for efficient 
computations of the derivatives of the switching functions. It is easily verified by 
a direct computation. 

4.5. The Structure Of Singular Controls of SEIR Model 
We investigate the existence and local optimality of singular controls for the 
system in Eqs (90)-(93). By Propositions 4 in Eq. (32)-(33) the derivatives of the 
switching functions        〈       (    )〉  and        〈       (    )〉 are 
given by  

  
̇     〈     [            ]    〉

̇  (104) 

  
̇     〈     [            ]    〉

̇  (105) 
By anti-commutative of the Lie bracket [     ]    and a simple computation 
verifies that the control vector fields      and      commute, i.e., [     ]     as 
well. We thus have that  

  
̇     〈     [    ](     )〉         and             

̇     〈     [    ](     )〉  

Elementary calculations verify that 

                             [    ]    (

  
  
 

      

)            and               [    ]    

(

  
    
   
   

,  

We first analyse the control, i.e., vaccinations schedules. Applying Propositions 2 
once more to    

̇  , it follows that  

  
̈     〈     [          [    ]](    )〉 (106) 

A direct calculation shows that     and  [    ]  commute as well,  [   [    ]]  

(

 
 
 
  

), and that  

[   [    ]]    (

   
  
 

       

)  

The relation  
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̇                                            (107) 

Implies that 

〈     [   [    ]](    )〉                      
And                         gives that        must be positive along a 
singular are. Hence we have that 

〈     [   [    ]](    )〉                       

Singular controls of this type, i.e., for which 〈     [   [    ]](    )〉 does not 
vanish, are said to be of order 1 and it is a second-order necessary condition for 
minimallity, the so-called Legendre-Clebsh condition, that this quantity be 
negative  [ ] . Thus for this model singular controls    are locally optimal. 

Furthermore, in this case, we taking into account that  [   [    ]]  (

 
 
 
  

) , we 

can compute the singular control as 

         
〈     [  [    ]](    )〉

〈     [   [    ](    )]〉
 

(108) 

Here,  

 

[  [    ]]    

(

 

                 

                    

              

                       )

  (109) 

 

Since  〈     [    ](    )〉   , it follows from (31) that  

         
 

    
*                                 

  

   
(
    

 
)  +, 

 

 
(110) 

where,                         Therefore, we obtain the following 
result 

Proposition 5.  A singular control u is of order 1 and satisfies the Legendre-
Clebsch condition for minimality. The singular control is given as a function 
depending both on the state and the multiplier in the form 
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[                                

 
  

   
(
    

 
*  ] 

 

 

where                        
 
For treatment control, we define the switching function as 

      〈       (    )〉 (111) 
By using proposition 2, the first derivative of Eq. 34 we have 

  
̇    ̇        [    ]                              (112) 

As we know, to check the optimally Eq 111, Eq. 112 will be zero, we have 
      [    ]                                 (113) 

Hence, we have 
  
̈       [    ] 

                        
                           
                         
                              

It also shows a second-order necessary condition for minimallity, the so-called 
Legendre-Clebsh condition, that this quantity be negative  [ ] . Thus for this 
model singular controls    are locally optimal. Furthermore, in this case,and 
taking 

         
〈     [  [    ]](    )〉

〈     [   [    ]](    )〉
  

 
(114) 

Here, we have 
 
     [    ]                                        
                                                

                                 and ( (        ))  

           
we can compute the singular control as 
 

        
 

            
                           

                                  
    

                                     
                            

   
         

 

 
 
 
(115) 

Therefore, we obtain the following result: 
 
Proposition 6.  The control v is singular. 
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4.6. FORMULATION AS AN OPTIMAL CONTROL PROBLEM OF 
VSIR MODEL 

Our aim is to solve the following problem: firstly, we define the given initial 
population sizes of all four classes,      , and  . Find the best strategy in terms 
of combined efforts of vaccination and treatment that would minimize the 
number of people who die from the infection while at the same time, also 
minimizing the cost of vaccination and treatment of the population. For 
tuberculosis since the immunity is waning so the immunity is not permanent, and 
in this paper  we splited the model of vaccinated control becomes    and   , 
where    and    denote as cost for vaccinated child and adult ones, respectively 
for a fixed terminal time  , we consider the following objective: 

       ∫                                
 

 

 
(116) 

 

The first term in the objective, aV(t), represent infants individual with passive 
immunity at time  ,      , represents the number of people who are infected at 
time t and is taken as a measure for the deaths associated with the outbreak. The 
terms,             and       represent the cost of vaccination and treatment, 
respectively. For a fixed terminal time  , minimize the value     subject to the 
dynamics, similar to [3]. 

 ̇                           (117) 
 ̇                     (118) 

 ̇                          (119) 
 ̇                          (120) 

Over all Lebesgue measurable functions 

  [   ]  [      ] and   [   ]  [      ] 

Introducing the state             , the dynamics of the system is a multi input 
control-affine system of the form  

 ̇                     

With drift vector field   given by 

     (

     
        

             

             

, 

and control vector fields    and    given by 
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      (

     
  
  
 

, and       (

 
 
 
  

,. 

We call an admisisible control pair       with corresponding solution   a 
controlled trajectory of the system.  

4.7 NECESSARY CONDITIONS FOR OPTIMALITY OF VSIR 
MODEL 

Let a first order necessary conditions for optimality of a controlled trajectory 
are given by Pontryagin maximum principle and let a row vector   

                
   , we defined the Hamiltonian              as the dot 

product, 〈    〉, of the row vector   with the column vector that defines the 
dynamics, as necesssary conditions for optimality given by the Pontryagin 
maximum principle [2,6], that is 

  〈                    〉 

                                              

                        –                

Then, if         is an optimal control defined over the interval [   ] with 
corresponding trajectory                 

 , there exists an absolutely 
continuous co-vector,   [   ]        such that the following conditions hold: 

(a)   satisfies the adjoint equations (written as a row vector and    and     
denoting the Jacobian matrices of the partial derivatives) 

 

 ̇ = -  (Df(x*) + Dg1(x*)u* + Dg2(x*)v*) 
 

(121) 

With terminal condition 

     (
 

   
 

  

          
    * 

 

(122) 

(b) for almost every time   [   ] the optimal controls               minimize 
the hamiltonian along (             over the control set 
[      ] [      ] and 

(c) the Hamiltonian is constant along the optimal solution. 
We call a pair (       ) consisting of admissible controls       with 

corresponding trajectory   for which there exist multipliers   such that the 
conditions of the maximum Principle are satisfied an extremal (pair) and the triple 
            is an extremal lift (to the cotangent bundle). 
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Note that the dynamics does not depend on the auxiliary variable Z and thus by 
the adjoint equation (9) the multiplier    is constant; by the terminal condition 
(10) it is thus given by       

 

   
. In particular, the overall multiplier      is 

never zero. For almost any time  , the optimal controls               minimize 
the Hamiltonian                   over the compact interval 
[      ] [      ]. Since   is linear in the controls, this minimization problem 
splits into two separate one-dimensional problems that can easily be solved. 
Defining the so-called switching functions    and    like in [7] as 

 

      〈              〉                                

and 

      〈              〉               

 

it follows that the optimal controls satisfy 

 

       {
                     

                 
   and         {

                     

                 
. 

 

The minimum condition alone does not determine the control at times when  
       . If        , then the control switches between the value 0 and its 
maximum value depending on the sign of  ̇    . Controls with this property are 
called bang-bang controls and we refer to the constant controls with values in the 
andpoints of the control intervals as bang controls. The other extreme occurs 
when a switching function vanishes over an open interval. In this case all 
derivatives of  ̇     must vanish and this typically allows to compute such a 
control. Controls of this kind are called singular [9]. While the name (which has 
historical reasons) might give the impression that these controls are less 
important, quite the contrary is true. According Singular controls (if they exist) 
tend to be either the best (minimizing) or the worst (maximizing) strategies and in 
either case they are essential in determining the structure of optimal controls. 
These typically then need to be synthesized from bang and singular controls 
through an analysis of the switching function. Thus singular controls generally 
play a major role in a synthesis of optimal controlled trajectories and in this paper 
we analyze their existence and loocal optimality for the problem in (117) - (120). 
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An essential tool in this analysis is the Lie bracket of vector fields which 
naturally arises in the formulas for the derivatives of the switching function. 
Given two differentiable vector fields   and   defined on a common open subset 
of   , their Lie bracket can be defined as 

[   ]                        

The Lie-bracket is anti-commutative, i.e., [   ]   [   ], and for arbitary vector 
fields     and   it satisfies the Jacobi identity[8] 

[  [   ]]  [  [   ]]  [  [   ]]    (123) 
The following result provides an important framework for efficient computations 
of the derivatives of the switching functions. It is easily verified by a direct 
computation. 

4.8 THE STRUCTURE OF SINGULAR CONTROLS OF VSIR 
MODEL 

 
Now, we start by investigating the existence and local optimality of singular 

controls for the system in (117) - (120). By proposition 4 the derivatives of the 
switching functions       〈             〉 and       〈             〉 are 
given by 

 
 ̇     〈     [            ]      〉 
 ̇     〈     [            ]      〉 

 
By anti-commutativity of the Lie bracket [     ]    and a simple computation 
verifies that the control vector fields    and    commute, i.e., [     ]    as 
well. We thus have that 
 

 ̇     〈     [    ]      〉 and   ̇     〈     [    ]      〉 
 
Elementary calculations verify that 

[    ]    (

  
  
 

   

, 

and 
 

[    ]    (

  
 

    
 

, 

 
We first analyze the control u, i.e., vaccination schedules. Applying 

Proposition 2 once more to  ̈ ,  it follows that 
 ̈     〈     [          [    ]]      〉 (124) 
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and 

[   [    ]]    (

   
  
 

    

, 

(125) 

 
 

The switching function of (13) is  
 ̇                                       (126) 

 
Implies that 

〈     [   [    ]]      〉                                 (127) 
 
 

and                                       gives that       and        
must be positive along a singular arc. Hence we have that 
 

〈     [   [    ]]      〉                                  . 
 

Singular controls of this type , i.e., for which 〈     [   [    ]]      〉 does not 
vanish, are said to be of order 1 and it is a second-order necessary condition for 
minimality, the are so called legendre-Clebsch condition, that this quantity be 
negative [9]. Thus for this model singular controls u are locally optimal. 
Furthermore, we can compute the singular control as 
 

          
〈     [  [    ]]      〉

〈     [   [    ]]      〉
 

(128) 

 
To evaluate the vector fields, this equation can be simplified. A direct, but 

some what lengthy computation shows   
 

[  [    ]]    

(

 

                

       

        

                    )

  

 
and 

〈     [  [    ]]      〉

      (  (              )            )

            
                      
                                         

 
 
 
 
(129) 

 
we can write 
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[  [    ]]     [    ]    
 

 
[   [    ]]        

where 
 

                                  
                      

 
Since 〈     [    ]      〉   , it follows from (16) that 
 

         
 

 
  

 

 

    

          
 

 
Once more using (14), we simplified the second term to     

    
 and we obtain the 

following result: 
 
Proposition 7. A singular control u is of order 1 and satisfied the Legendre-
Clebsch condition for minimality. The singular control is given as a function 
depending both on the state and the multiplier in the form 
 

        
 

 
(
    

   
  *  

 
Based on the structure of singular control we apply the same way to analysis 
treatment control    . Let switching function    give 

      〈             〉 
The first derivative of    is 

 ̇     〈     [            ]      〉 
 
and the second derivative is given by 
 

 ̈     〈     [           [    ]]      〉. 
 
Furthermore, a direct calculation verifies that 
 

[   [    ]]  (

   
 

   
 

,   [    ]    

 
Since   and [     ] commute, it follows from the Jacobi identity that 
[   [    ]]  [   [    ]]   . 
we found 〈     [    ]      〉    and thus also 
 

〈     [   [    ]]      〉    
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and [      ] and [   [    ]]   . Thus there is no singular on    we obtain the 
following result 
 
Proposition 8. The control v cannot be singular. 

4.9 FORMULATION AS AN OPTIMAL CONTROL PROBLEM OF 

VSEIR MODEL 

Let the population sizes of all there classes,          and   are given, find the 

best strategy in terms of combined efforts of vaccination and treatment that would 

minimize the number of people who die from the infection while at the same time 

also minimizing the cost vaccination and treatment of the population. 

 

In this paper, we consider the following objective for a fixed terminal time  : 

 

       ∫                               

 

 

 
 

(130) 

The first term in the objective,       represents the number of exposed who are 

infected but are yet to show any sign of symptoms at time  ,      , represents the 

number of people who are exposed and infected at time    and are taken as    

measure for the deaths associated with the outbreak. The terms,             

and         represent the cost of vaccination and treatment, respectively, and are 

assumed to be proportional to the vaccination and treatment rates. 

We shall apply methods of geometric optimal control theory to analyse the 

relations between optimal vaccination and treatment schedules. These techniques 

become more transparent if the problem is formulated as a  Mayer –type optimal 

control problem : that is , one where we only minimize a penalty term at the 

terminal point. Such a structure can easily be achieved at the cost of one more 

dimension if the objective is adjoined as an extra variable. Defining 

 

 ̇                              . (132)                                      

 

We therefore consider the following optimal control problem. For a fixed terminal 

time, minimize the value      subject to the dynamics 
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 ̇                                (133) 

 ̇                          (134) 

 ̇                            (135) 

 ̇                        (136) 

  ̇                    (137) 

where            . Over all Lebesque measurable function 

 

  [   ]  [      ]   and        [   ]  [      ] 

 

Introducing the state   ̇               , the dynamics of the system is a 

multiinput control-affine system of the form 

 ̇                      (138) 

with drift vector field       given by 

     

(

 
 

       
           

             
            

      )

 
 
  

 

 

 

(139) 

and control vector fields    and    given by  

   

(

 
 

     
  
  
  
 )

 
 

       and           

(

 
 

  

 
 
 
  )

 
 

. 

 

 

(140) 

We call an admissible control pair       with corresponding solution   a 

controlled trajectory of the system. 

 

4.10 NECESSARY CONDITIONS FOR OPTIMALITY OF VSEIR MODEL 

 

First-order necessary conditions for optimality of a controlled trajectory by 

the Pontryagin maximum principle [4,15] : For a row-vector   

                    
   , we define the Hamiltonian               as the 

dot product, 〈    〉  of the row vector     with the column vector that defines the 

dynamics, that is  
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  〈                    〉  

                                             

                                          

             . 

 

 

 

(141) 

Then, if         is an optimal control defined over the interval [   ] with 

corresponding                               trajectory                  
 , there exists an 

absolutely continuous co-vector,   [   ]       , such that following conditions 

hold [6]  

      satisfies the adjoin equation ( written as row vector and with     and       

denoting the Jacobian matrices of the partial derivatives ) 

 ̇                                  (142) 

with terminal condition  

     (
 

  
      * (143) 

 (b) for almost every time    [   ] the optimal controls (           ) minimize 

the Hamiltonian along (          )  over the control set [      ]  [      ] 

and,  

(c) the Hamiltonian is constant along the optimal solution. 

 

We call a pair (       ) consisting of admissible controls       with 

corresponding trajectory   for wich there exist multipliers   such that the 

conditions of the Maximum Principle are satisfied an external (pair) and the triple 

            is an external lift. Note that the dynamics does not depend on the 

auxiliary variable   and thus by the adjoint equation (6) the multiplier    is 

constant; by the terminal condition (20) , it is thus given by       
 

 
. In 

particular, the overall multiplier      is never zero. For almost any time  , the 

optimal controls (           ) minimize the Hamiltonian                   

over the compact interval [      ]  [      ]. Since   is linear in the controls, 

this minimization problem splits into separate one-dimensional problems that can 

easily be solved. Defining the so-called switching functions     and     as 



 

41 

  

      〈       (     )〉               (144) 

and 

      〈       (     )〉               (145) 

It follows that the optimal controls satisfy 

 

      {
                              
                         

          and             

      {
                          

                           
 

 

The minimum condition alone does determine the controls at times when 

                if           , but        , then the control switches between 

the value 0 and its maximum value depending on the sign of    ̇    . Controls with 

this property are called bang-bang controls and we refer to the constant controls 

with values in the endpoints of the control intervals as bang controls. The other 

extreme occurs when a switching function vanishes over an open interval. In this 

case also derivatives of         must vanish and this typically allows to compute 

such a control. Controls of this kind are called singular [6]. While the name might 

give impression that these controls are less important, quite the contrary is true. 

Singular controls (if they exist) tend to be either that best (minimizing) or the 

worst (maximizing) strategies and in either case they are essential in determining 

the structure of optimal controls. This typically needs to be synthesized from bang 

and singular controls through an analysis of the switching function. Thus singular 

controls generally play a major role in a synthesis of optimal controlled 

trajectories and this paper we analyse their existence and local for the problem in 

Eqs. (118)-(122). 

An essential tool in this analysis is the Lie bracket of vector fields which 

naturally arises in the formulas for the derivatives of the switching function. Give 

two differentiable vector fields    dan   defined on a common open subset of    , 

their  Lie bracket  can be defined as  

[   ]                        (146) 
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The Lie-bracket is anti-commutative, i.e.,[   ]   [   ], and for arbitrary vector 

fields     and   it satisfies the Jacobi identity [5] 

[  [   ]]  [  [   ]]  [  [   ]]    (147) 

The following result provides an elegant and important framework for efficient 

computations of the derivatives of the switching functions. It is easily verified by 

a direct computation. 

 

4.11 THE STRUCTURE OF SINGULAR CONTROLS OF VSEIR MODEL 

We investigate the existence and local optimality of singular controls for the 

system in Eqs (118)-(122). By Propositions 4 the derivatives of the switching 

functions        〈       (    )〉  and        〈       (    )〉 are given by  

  
̇     〈     [            ]    〉

̇  (147) 

  
̇     〈     [            ]    〉

̇  (148) 

By anti-commutative of the Lie bracket [     ]    and a simple computation 

verifies that the control vector fields      and      commute, i.e., [     ]     as 

well. We thus have that  

  
̇     〈     [    ](     )〉         and             

̇     〈     [    ](     )〉  

Elementary calculations verify that 

 

                             [    ]    

(

 
 

   
        
        

   
   )

 
 

            and               [    ]    

(

 
 

   
 
 

    
 )

 
 
  

We first analyse the control, i.e., vaccinations schedules. Applying Propositions 2 

once more to    
̇  , it follows that  

  
̈     〈     [          [    ]](    )〉 (149) 
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A direct calculation shows that     and  [    ]  commute as well,  [   [    ]]   

(

 
 

 
 
 
 
 )

 
 

, and that  

[   [    ]]    

(

 
 

    
       
        

    
    )

 
 
  

The relation  

  
̇                                              

                     

                  

                          

                  

 

 

 

(150) 

Implies that 

〈     [   [    ]](    )〉                          

And                                               gives that  

      must be positive along a singular are. Hence we have that 

〈     [   [    ]](    )〉                           

Singular controls of this type, i.e., for which 〈     [   [    ]](    )〉 does not 

vanish, are said to be of order 1 and it is a second-order necessary condition for 

minimality, the so-called Legendre-Clebsh condition, that this quantity be 

negative  [ ] . Thus for this model singular controls    are locally optimal. 

Furthermore, in this case, we taking into account that  [   [    ]]  

(

 
 

    
       
        

    
    )

 
 

 , we can compute the singular control as 

         
〈     [  [    ]](    )〉

〈     [   [    ](    )]〉
 

(151) 

Here,  
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[  [    ]]    

(

 
 

                  
                   

                         

           

            )

 
 

 (152) 

 

then  

         
  [                  ]    [                   ]

  [    ]    [       ]    [        ]    [   ]    [   ]
 

 

(153) 

 
  [                         ]    [ 

          ]    [ 
          ]

  [    ]    [       ]    [        ]    [   ]    [   ]
 

 

Therefore, we obtain the following result 

  

Proposition 9.  A singular control u is of order 1 and satisfies the Legendre-

Clebsch condition for minimality. The singular control is given as a function 

depending both on the state and the multiplier in the form 

         
  [                  ]    [                   ]

  [    ]    [       ]    [        ]    [   ]    [   ]
 

 
  [                         ]    [ 

          ]    [ 
          ]

  [    ]    [       ]    [        ]    [   ]    [   ]
 

For treatment control, we define the switching function as 

      〈       (    )〉              (154) 

By using proposition 2, the first derivative of Eq. 34 we have 

  
̇    ̇        [    ]                   (155) 

As we know, to check the optimally Eq 34, Eq. 35 will be zero, we have 

      [    ]                      (156) 

Hence, we have 

  
̈        [    ]    

It also shows a second-order necessary condition for minimallity, the so-called 

Legendre-Clebsh condition, that this quantity be negative  [ ] . Thus for this 

model singular controls    are not locally optimal. Therefore, we obtain the 

following result: 

Proposition 10.  The control v is not  singular. 
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CHAPTER V 

CONCLUSION 

 

This research has consider VSEIR model of Tuberculosis having infectious in 

latent, infected, vaccination and immune period. VSEIR models have been 

constructed for the disease tuberculosis (TB) in northern Sumatra. The breeding 

rate is derived. If      the free equilibrium is stable, so that the disease is 

always dies out. Whereas, if       , the disease free equilibrium become 

unstable in North Sumatera. Stability analysis has been performed to determine 

that the northern Sumatran still within safe levels. To control vaccine and 

treatment schedule, the singularity is analysed using the properties of the optimal 

singular control. The singularity properties have proven to Vaccination 

Susceptible Infected and Recovery (VSIR), Susceptible Exposed Infected and 

Recovery (SEIR) model and also to  Vaccination Susceptible Exposed Infected 

and Recovery (VSEIR) model of Tuberculosis disease. From the result, we found 

that, the vaccination schedule of VSIR, SEIR and VSEIR, respectively models are 

controlled, whereas the only the treatment schedule of SEIR model in Northern 

Sumatera is controlled, otherwise. By proving the singularity of the other model, 

the optimal control of the models for vaccine and treatment schedule can be 

determined. 
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Abstract—In this paper, a vaccination susceptible exposed infected recovered (VSEIR) model of 
dengue fever disease in North Sumatera is discussed. The VSEIR model is formed by a system of 
nonlinear differential equation. The approximate solution of this model is obtained using   step   
variational iteration method (SVIM) and variational iteration method (VIM). VIM used the general 
Lagrange multiplier in the correction functional running iteratively.   Whereas, SVIM also used the 
general Lagrange multipliers for construction of the correction functional for the problems, and   runs 
by step approach, which is computed to  divide the interval into subintervals with time step. The 
two methods are the alternative methods to obtain the approximate solutions of the VSEIR model. 
Additional, comparison is made against the conventional numerical method, fourth Runge–Kutta 
method (RK4). From the result, SVIM solution is more accurate than VIM solution for long time 
interval when it compared to fourth order Runge-Kutta (RK4). 
 
Keyword: VSEIR model, General Lagrange Multiplier, Variational Iteration Method, Step Variational 
Iteration Method, The Fourth Order Runge Kutta  
 

I. INTRODUCTION 
Tuberculosis (TB) acquired through airborne infection and, most commonly affects the lungs. 
TB is a bacterial disease caused by Mycobacterium Tuberculosis, which transmitted through 
contaminated air that is released during coughing TB patients. TB disease can affect anyone and 
anywhere, and generally in children the source of infection is derived from adult TB patients [1]. 
TB infection can infect virtually all body because the bacteria can spread through the blood 
vessels or lymph nodes. Although the organs most commonly affected are the lungs, but in people 
with a low immune system can infect the lungs, brain, kidneys, gastrointestinal tract, bone, lymph 
nodes, etc [1]. 
 TB is a one public health problem in the world despite the efforts to control the DOTS 
strategy has been implemented in many countries since 1995. In a WHO report of 2013, there were 
an estimated 8.6 million TB cases in 2012 where 1.1 million people (13%) of them are in the 
African region. There are 450,000 people suffering TBMDR and 170,000 of them dead [2]. In 
North Sumatera, in 2012, around 82.67 % of BTA + (infected) for 17,459 patients and around 
83.34 % from the total patients of TB can be cured. To see the development of trans- mission of 
Tuberculosis the dynamics, Rangkuti et al. [5] have built a new model. The VSEIR model is divided 
into five classes. The class V represents vaccination, S represents the susceptible that do not have 
the disease, E represents the exposed that are infected but is yet to show any sign of symptoms, I 
represents the infective that have the disease and can transmit it to others, R, denotes the 
recovered class of those who went through infection and emerge with permanent or temporary 
infection-acquired immunity. The VSEIR model is described by the following dynamic system:  

 ̇
 
                       (1) 

 ̇
    
                        (2) 
 ̇               (3) 

 ̇          (4) 
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 ̇          (5) 
where                      .  Here,  the  human birth in natural through passive vaccination 
        at rate  , nonnegative parameters             and    denote as  natural death of  
population of the   , the   ,  the  , the    and  the   ,  respectively. Population of infected 
Tuberculosis died in rate    .  The susceptible population decreased due to coming individual 
from the   in rate   .   denotes the  transfer  rate  from  susceptible  to infected population. 
Infected population increases due to movement of individuals from infected individuals   in rate 
    and decreased due to movement of individuals in to the R at rate  . The model can be 
simplified by assuming the fractions       

 

 
      

 

 
     

 

 
      

 

 
   and     

 

 
  

Thus, the model for TB can be simplified as follows 
  

  
             

(6) 

  

  
               

(7) 

  

  
              

(8) 

  

  
         

(9) 

  

  
         

(10) 

subject to initial conditions 
                                  
                      and                 
The above initial conditions were obtained from the real data of TB in North Sumatera [8]. 

Most model of real life problems, however, are still very difficult to solve. Our motivation 
for this work is to provide an alternative analytical method to find the solution for the epidemic 
model. This centralized on a newly modified version of VIM, which is generally called the step 
variational iteration method (SVIM) proposed by Yulita Molliq et al. [3]. We will present 
comparative solutions with VIM and fourth-order Runge–Kutta method (RK4). We choose the 
conventional RK4 as our benchmark, as it is widely accepted and exactly used. The accuracy of 
SVIM has been shown for solving two chaotic systems i.e. Roössler and Genesio systems. In 
SVIM technique, each interval on VIM is divided to subinterval with time span t and the 
solution at each subinterval will be obtained. It is necessary to satisfy the initial condition at each 
subinterval, the initial conditions will be changed for each subinterval it should be satisfied 
through initial conditions, it continuously done in SVIM. Yulita Molliq et al. [4] modified the 
SVIM to find the approximate solution of a fractional biochemical reaction model. 
 This paper is organized as follows: Section 2 discusses the main idea on VIM and some 
recent advances on the technique, Section 3 deals with the concept of SVIM, Section 4 outlines 
the application of SVIM to the VSEIR model, Section 5 present the results obtained by the 
methods mentioning with some critical discussions, and lastly, Section 6 offers some concluding 
remarks on the method used. 
 

II. VARIATIONAL ITERATION METHOD (VIM) 
 
To introduce the basic concepts of variational iteration method (VIM), we consider the 
following nonlinear differential equation: 

                       (11) 
where     is  a  linear  operator,    is  a  nonlinear operator,  and         is  an  inhomogeneous  
term           .   
 
According to VIM, one can construct a correction functional as follows: 

            ∫                 
 

 

 
 

(12) 
where                    are the Lagrange multipliers [6], which can be identified optimally 
via the variational theory,  ̃       and are considered as restricted variations, i.e.   ̃        .  
Once we have determined the Lagrange multiplier, we use VIM to perform the iteration using 
the initial approximation, which we choose by a linearized solution of  the  equation that  
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satisfies the  initial conditions. Therefore, we can successively approximate or even reach the 
exact solution by using 

        
   

        (13) 
where   is the iteration step. 
 
 

III. STEP VARIATIONAL ITERATION METHOD (SVIM) 
In this section, we shall now look at how this new modification of VIM so called step variational 
iteration method (SVIM) to find the approximate solution for longer time span t, Here, interval 
[    ] is regarded as an interval, then the interval is divided to subinterval with time span t and 
the solution at each subinterval of Eqs. (7)-(10) will be obtained. It is necessary to satisfy the 
initial condition at each subinterval, the initial conditions                    will be changed for 
each subinterval, i.e. and it should be satisfied through initial conditions,        

       for all 
     . Thus the formula can be written as [3]: 

            ∫                 
    

 

 
(14) 

Here,        as upper limit of integration instead of fixed upper limit of   in Eq. (12). The 
approximate solution takes the form: 

                 (15) 
Where     start from        until        ,   is number of subinterval. To carry out the 
solution on every subinterval of equal length    the values of the following initial condition are 
shown below  

  
      

              (16) 
In general, we do not have the information of our clearance except at the initial point  

 
      

  , but these values can be obtained by assuming that the new initial condition is the solution in 
previous interval i.e. if the solution in interval [        ] is necessary then the initial condition 
of this interval will be as follows 

          (       )  (17) 
where                   are the initial conditions in the interval [        ]. 
 

IV. APPLICATION 
 
In this section, the VIM method is applied to compute an approximate solution of nonlinear 
system of differential equations describing a VSEIR model [5]. According to VIM the 
correctional functional constructing as follow 
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where               are the general Lagrange multiplier which can be identified optimally via 
the variational theory and the subscript   indicates the  th.  To obtain the optimal       ,  we 
proceed as follows: 
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where     ̃,     ̃       ̃  and   ̃   are  considered restricted variations .i.e.        ̃ , 
       ̃          ̃   and    ̃   , Then we have  
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Thus, the general Lagrange multiplier are obtained as follow 
              (33) 
              (34) 
              (35) 
             (36) 
             (37) 

Here, the general Lagrange multiplier in (34)-(37) is expanded by Taylor series only one 
term, so the general Lagrange multiplier can be written as follows 

       (38) 
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      (40) 
      (41) 
      (42) 



 

54 

 

Substitute the general Lagrange multiplier into (38)-(42) into the correctional iteration functional 
in Eqs. (19)-(22) result in the following iteration formula: 
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The interval [    ] is divided to subintervals with the time step    to obtain the solution at 
each subinterval. In this case, the initial conditions i s satisfied at each of the subinterval [7], i.e 
        

             
        

     
    ,         

     and 
        

      The initial conditions should be satisfied     
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    for all    . Such that (7) to (10) can be written as 
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V. RESULTS AND DISCUSSION 

 
Maple mathematical software was used for all our computations. The iterative schemes for VIM 
in (44)–(47) and SVIM in (49)–(52) are coded in the computer algebra package Maple and we 
employed Maples built in fourth-order Runge–Kutta procedure rk4. We revised parameters and 
initial conditions in [5] due to updating data of TB in North Sumatera which the parameters are 
deter- mined by previous studies and Health Department of North Sumatera province as shown in 
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table 1. 
 
TABLE 2. PARAMETER VALUES 
Name of Parameter Values Ref 
birth rate (q) 0.0094 [8] 
death rate for baby      0.0065 [8] 
rate of baby vaccine convert to 
susceptible      

0.0160 [8] 

death rate      0.0075        [8] 
rate of susceptible to exposed 
    

0.0016 [8] 

death rate                                                                 0.0009        [9] 
rate of exposed to infected     0.0085

9       
[8] 

death rate cause TB       0.0071        [8] 
death rate      0.0009        [9] 
rate of infected to recovery 
     

0.0919        [8] 

death rate in recovery period 
    

0.0009        [9] 

 
Here, the number of population      is 13,215,401 including all babies born i.e. 303,327 babies, 
number of vaccination is 284,633. The Number of susceptible is 10,802,233, exposed is, 
2114464, infected is 22,360, recovery is 12154, and mortality because TB is 117.  Thus the initial 
conditions used                                                             and 
                for all computations. We determine the accuracy of RK4 for the solution of 
Model in (7)-(10) shown in Figure 1, since the RK4 widely and accuracy used. This solution is 
view as benchmark of this model. We  used  4  iterate  VIM  and  SVIM  to  find the spreading 
number of vaccination    ,  susceptible    ,  exposed    , infected    ,  and recovery     
probability at time step            , respectively. The comparisons displayed between results 
from VIM, SVIM and RK4 for         [    ]  in figure 2. From the figure, they are obvious 
that VIM exhibit unpredictable behaviour because their graph divert from the RK4 and SVIM. 
Both RK4 and SVIM solution show good synchronization at the time carried out and both the 
results agree very well with each other. We note that the solution of all variable will converge 
to RK4 solution in certain time. Table 2 presents the absolute value of 4th   iterate SVIM and 
VIM for recovery case 
 
 

 
(a) 
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(b) 

Fig.  4 .    The  number  of  spreading  of  
Tuberculosis;  (a)                  (b) 
          which are obtained using RK4 for 
           . 
 

TABLE 3. THE ABSOLUTE ERROR OF 4th ITERATES SVIM SOLUTIONS COMPARING TO RK4 
WITH          

 
          From  table  2,  the  accuracy  of  VIM is shown the maximum error of VIM solution 
is         .  The solutions of SVIM (4-iterates) are compared to those of RK4. The maximum 
error using SVIM is now decreased to         if it compared to the maximum error using VIM. It 
also occurs in infected case         the maximum error of VIM solution is        , whereas the 
maximum error of SVIM solution decreased i.e.         , see in Table 2. The above states that it 
shows the SVIM better accuracy. 
 

 
(a) 

 
(b) 
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(c ) 

 
(d) 

 
(e) 

Fig. 5. The approximate solution of;           
                                    which 
are obtained using SVIM, VIM and RK4 
 
TABLE 4. THE ABSOLUTE ERROR OF 7th ITERATE VIM SOLUTIONS COMPARING TO 
RK4 WITH            

 
 

VI. CONCLUSIONS 
 
In this paper, an algorithm of VSEIR model of TB using step variational iteration method (SVIM) 
was implemented. We found that SVIM is a suitable technique to solve the system of nonlinear 
differential equation. This method yields an analytical solution in iterations of a rapid convergent 
infinite power series with enlarged intervals. Comparison between SVIM, VIM and RK4 were 
made; the SVIM was found to be more accurate than the VIM. SVIM is easier in calculation yet 
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powerful method and also is readily applicable to the more complex cases of these problems which 
arise in various fields of pure and applied sciences. 
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Abstract—The optimality singular controls of a VSEIR model of Tuberculosis are analyzed 
in this paper. There are controls that correspond to time- vary the vaccination and 
treatment schedules. A Hamiltonian (H) of the model is defined. The model is splited into 
separate one-dimensional problems, the so-called switching functions. The extreme occurs 
when a switching function disappears suddenly over an open interval. In which the 
derivatives of switching function must disappears suddenly and this typically allows 
computing such a control. The second-order of the function is not vanishing, which 
satisfied Legendre-Clebsh condition, and thus the controls of these kinds are called singular. 
In this work, our main emphasis is on a complete analysis of the optimum properties 
corresponding to trajectories. The result shows that vaccination control is singular, but 
treatment is not. This means that the model reached the optimality control for vaccination 
schedule, but not treatment schedule. 
 
Keywords: VSEIR model; Singular control; Legendre-Clebsh; switch functional 
 

I.    INTRODUCTION 
 
Tuberculosis (TB) acquired through airborne infection and, most commonly affects the lungs. 
TB is a bacterial disease caused by Mycobacterium Tuberculosis, which  is  transmitted through  
contaminated  air  that  are  released  during  coughing TB patients. TB disease can affect anyone 
and anywhere, and generally in children. The source of infection is derived from adult TB 
patients [1]. TB infection can infect virtually all body because the bacteria can spread through the 
blood vessels or lymph nodes. Although the organs most commonly affected are the lungs, but in 
people with a low immune system can infect the lungs, brain, kidneys, gastrointestinal tract, bone, 
lymph nodes, etc [1]. Molliq et al. [2] modified adopted Exposed class to Vaccination Susceptible 
Infected Recovery (VSIR) model which proposed by Momoh et al. [3]. Efforts to eliminate a 
disease that can be managed optimally spread will be reached by the stage of research, the 
application of new methods, the development of several diagnostic tools, drugs  and  new  
vaccines. Optimization of the control of the disease control needs a study of optimization 
model[4]. Optimization of dynamical systems in general use optimal control, where the solving 
problem of optimal control using the famous and wide used approach i.e.  Pontryagin maximum 
principle with Legendre-Clebsch condition [5-6]. 

In this paper, we analysed the optimal singular control of VSEIR model [2]. Here, any 
interaction between exposed and infected is investigated using a Legendre-Clebsch condition. 
Ledzewicz and Schatter [7] analyzed the optimal singular controls of a general SIR model with 
vaccination and treatment. It showed that control for vaccination was singular, but not treatment. 
Based on [7], we will show the optimal singular control of VSEIR model to see the schedule of 
controlling on vaccination and infected variable.  
 

II. FORMULATION OF EPIDEMIOLOGICAL MODEL 
 
We only consider the epidemiology model of type VSEIR [2] which has five classes. The class   
represents vaccination,   represents the susceptible who do not have the disease,    represents the 
exposed who are infected but are yet to show any sign of symptoms,   represents the infective who 
have the disease and can transmit it to others,   denotes the recovered population who went 
through infection and appear with permanent or temporary infection which need immune. the total 
number of individuals was denoted S by N (t) which divided into four distinct epidemiological 
subclasses of individuals. Let                   and     , represent the vaccination, 
susceptible, infectious, and recovered, respectively. Thus, N (t) can be written as        
                              The VSIR model [4] having vaccination, infected and 
recovered period is described by the following dynamic system: 

 ̇
 
                       (1) 

 ̇
    
                        (2) 
 ̇               (3) 

 ̇          (4) 
 ̇          (5) 

The controlled mathematical model when                , where human birth in natural 
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through passive vaccination (V (t)) at rate q, nonnegative parameters          and    denote as 
natural death of population of the   , the  , the   the   and the     respectively. Population of 
infected Tuberculosis died in rate    . The susceptible population decreased due to coming 
individual from the    in rate     denotes the transfer rate from susceptible to infected 
population.  Influence of Exposed to infect is increased in rate  . Infected population increases 
due to movement of individuals from infected individuals   in rate    and it decreased due to 
movement of individuals in to the    at rate  . In this paper, we assume that human is fully 
recovered and   population will be decreased due to movement of individuals to the     at rate  . 
In the flow of mathematical model, we assume that each compartment occurs interaction between 
classes. 

Thus there are two possible mechanisms as controls: immunization of the vaccination, 
susceptible and exposed individuals and treatment of the infected ones. These models controlled 
by the two controls    and    that are taken as Lebesque-measurable functions. The controls 
improves the class R of the recovered individuals by removing them from the class of vaccination, 
susceptible and infected ones, respectively. The class    is defined as                  
       . To ensure the model to be reliable, make sure that all the variables which included R 
remain positive. The initial value of VSEIR model denoted by 
                                  and 
         

 
(6) 

From biological considerations, a closed set 
  {                        

         }  
 

(7) 
where   denotes the non-negative cone and its lower dimensional faces. It can be verified that 
  is positively invariant with respect to Eqs. (1)-(5). We denote by    and  ̇  the boundary 
and the interior of  . 
 

III. OPTIMAL CONTROL PROBLEM FORMULATION 
 

Our objective is, to investigate the best strategy in terms of vaccination and treatment that will 
minimize the number of people who die because of the infection while at the same time 
minimizing the cost of t h e  vaccination and treatment of the population. Let the population 
sizes of all five classes,                and     are given. We consider the following objective 
for a fixed terminal time  : 

       ∫                  
 

 

         

 
 

(8) 
where     

     denotes the number of vaccination at time t,           represents the 
individuals who are exposed and infected at time   and are symbol    is measure of the deaths 
associated with the outbreak. The terms,             ) and         defines the cost of 
vaccination and treatment, respectively. Here,          and    are assumed to be proportional 
to the vaccination and treatment rates. We apply a methods of geometric optimal control theory to 
analyse the relations between optimal vaccination and treatment schedules. These techniques 
become more clear if the problem is formulated as a Mayer-type optimal control problem: that is, 
one where we only minimize a penalty term at the terminal point. Such a structure can easily be 
achieved at the cost of one more dimension if the objective is adjoined as an extra variable. 
Defining 
 ̇                      , and 
        

 
(9) 

We therefore consider the following optimal control problem. For a fixed terminal time, 
minimize the value        subject to the dynamics 
 ̇                      , and      
  , 

(10) 

 ̇
 
                          and        , (11) 

 ̇
    
                           and 

         
(12) 

 ̇                  and          (13) 
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 ̇             and           (14) 
where                          . For all Lebesque         measurable         functions 
   [    ]    [       ]  and      [    ]    [       ]   

We introduce the state                , the dynamics of system is multi input control affine 
system of the form 

 ̇                     (15) 
with drift vector field   given by 

     

(

 
 

       
           
            
           

      )

 
 

 

 
 

(16) 

and control  vector  fields        and     are   written as    

(

 
 
     

  
  

  
 )

 
 

 and    

(

 
 

  

 
 
 

  )

 
 
  

 
A controlled trajectory of the system is defined admissible  control pair         with 
corresponding solution  . 
 

IV. NECESSARY CONDITIONS FOR OPTIMALITY 
 

Let a row-vector                           from first-order necessary conditions 
for optimality of a controlled trajectory by the Pontryagin maximum principle [7-8]. Then, 
the Hamiltonian                 a r e  d e f i n e d  as the dot product,        of the row 
vector λ with the column vector defining the dynamics, that is 
  〈                    〉,  

                         
                
          
                  
         
               
    
                

 
 
 
 
 
 
 

(17) 
Afterward, if         is optimal control defined over interval [   ] with corresponding trajectory 
                   

  there is exist an absolutely continuous co-vector    [   ]       , so that 
following conditions hold [8] 
(a)   satisfies the adjoin equation (written as row vector and with    and    

denote the 
Jacobian matrices of the partial derivatives) 

 ̇                     

             
 

(18) 
with terminal condition 

     (
 

  

      *   
(19) 

(b) For  every  time         [    ], the   optimal   controls   (           ) minimize    the    
Hamiltonian    along (          ) over the control set [      ]  [      ]   and 

(c) Hamiltonian is constant along the optimal solution. 
A pair (x, (u, v)) consisting of controls       with corresponding trajectory   for which there are 
exist multipliers   so that the conditions of the Maximum Principle are satisfied an external (pair) 
and the triple             is an external lift. Note that the dynamics does not depend on the 
auxiliary variable   and thus by the adjoin equation (6) the multiplier    is constant; by the 
terminal condition (20), thus, it is given by       

 

  
. Particularly, the overall multiplier      

cannot be zero. For almost any time  , the optimal controls               minimize the 
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Hamiltonian                   over the compact interval [       ]    [       ]. Afterward, 
defining the so-called switching functions    and    as 

   〈              〉
                   
                       

(20) 

And 
   〈              〉                (21) 

It follows that the optimal controls satisfy 

      {
           

              
 

and 

      {
           

              
 

The minimum condition alone does determine the controls at times when          . If        

  , but  ̇        , then the control switches between the value 0 and its maximum value 
depending on the sign of   ̇     . The other extreme occurs when a switching function disappears 
suddenly over an open interval. In this case also derivatives of       have to disappear and then 
allows to compute such a control. Controls of this kind are called singular [7]. Singular controls 
tend to be either that minimizing or the maximizing strategies and in either case they are essential 
in determining the structure of optimal controls. We have to synthesize from singular controls 
through an analysis of the switching function. Thus singular controls generally play a major role in 
a synthesis of optimal controlled trajectories. In this work, the existence of the problem and local 
problem in Eqs. (11)-(14) will be analysed. An vital implement in this analysis is the Lie bracket 
of vector fields which generally arises in the formulas for the derivatives of the switching function. 
Give two differentiable vector fields   and   defined on a common open subset of   , their Lie 
bracket can be defined as 

[   ]                         (22) 
The Lie-bracket is anti-commutative, i.e  [   ]    [   ], and for arbitrary vector fields     and 
  it satisfies the Jacobi identity [7] 

[  [   ]]  [  [   ]]  [  [   ]]     (23) 
The following result provides an elegant and important framework for efficient computations of 
the derivatives of the switching functions. It is easily done by computation. 
 
Proposition IV.1. Let           be a controlled trajectory of the system and let  ¸ be a solution 
to the corresponding adjoint equations. Given a continuously differentiable vector field  , define 

     〈      (    )〉  (24) 
Then the first derivative of   is given by 

     〈     [           ](    )〉  (25) 
 

V. THE STRUCTURE OF SINGULAR CONTROLS 
 

For the system in Eqs. (11)-(14), we will investigate the existence and local optimality of 
singular controls. By Propositions IV.1 the derivatives of the switching functions        
 〈             〉 and         〈             〉 are written as 

 ̇     〈     [            ](    )〉  (26) 
 ̇     〈     [            ](    )〉  (27) 

By anti-commutative of the Lie bracket [     ]     and a easily computation confirms that the 
control vector fields    and    commute, i.e., [     ]    as well. We thus have that 

 ̇     〈     [    ]      〉 (28) 
and 

 ̇     〈     [    ](    )〉  (29) 
Elementary calculations verify that 



 

63 

 

[    ]    
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(30) 

and 

[    ]    
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(31) 

First, we analyse the control, i.e., vaccinations schedules. Applying Propositions IV.1 again to  ̇ , 
it follows that 
 ̈     〈     [          [    ]]      〉  (32) 

A direct calculation shows that    and [    ] commute as  well [   [    ]]  
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, and that 

[   [    ]]  
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(33) 

The relation 
 ̇                     

                   
          

 
 

(34) 
suppose 

                               
               

 
(35) 

Implies that 
〈     [   [    ]]      〉

                    
 

(36) 
and                                            gives that             and       
have to be positive along a singular arc. Hence we obtain 
〈     [   [    ]]      〉

                       
 

(37) 
Singular controls of Eq. (37) for which 〈     [   [    ]]      〉 does not disappear suddenly, are 
said to be of order 1 and it is a second-order necessary condition for minimality, the so-called 
Legendre-Clebsh condition, that this value is negative [8]. Thus for this model singular controls u 

are locally optimal. Furthermore, we taking into account that  [   [    ]]  

(

 
 

    
        
        

    
    )

 
 

, 

we can compute the singular control as 

     
〈     [  [    ]]      〉

〈     [   [    ]]      〉
  

 
(38) 

Here, 
[  [    ]]   
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Then 
     (                      

                  
      
                      
             

           

                 )

 (                     

                     

        )  

 
 
 
 
 
 
 
 
 

(40) 
Thus, the result can be written as follow 
 
Proposition V.1. A singular control u which has order 1 and satisfies the Legendre-Clebsch 
condition for minimality [8]. The singular control is given as a function that respect to unkno, 
depends on the both state and the multiplier in the following form 
     (                      

                  
      
                      
             

           

                 )

 (                     

                     

        )  

 
 
 
 
 
 
 
 
 

(41) 
 
Firstly, we define the switching function as 

   〈             〉               (42) 
By using proposition IV.1, the first derivative of Eq. (34) we have 

 ̇  〈     [    ]      〉              (43) 
As we know, to check the optimally of Eq (34), Eq. (35) will be zero, we obtain 

〈     [    ]      〉                (44) 
Hence, we have 

 ̈  〈     [    ]〉    (45) 
for minimality, the Legendre-Clebsh condition, that this value is negative [7]. Then, the singular 
controls v of VSEIR model is not locally optimal. Thus, we obtain the following result: 
 
Proposition V.2. The singular control v is not optimal. 
 

VI. CONCLUSION 
 

The optimal singular control problem for an VSEIR-model of Tuberculosis was discussed and a 
Hamiltonian H of model is defined. The structure of singular controls was analysed to determine 
singularity properties of the model. We apply Lie bracket of vector field to check whether the 
second order of switching function was disappeared or not and the model splits into separate one-
dimensional problems. Based on our computation by using Maple, the result shows that 
vaccination control is singular, but treatment is not. We found that the vaccination schedule was 
singular, but treatment schedule was not singular. The optimality of vaccination and treatment for 
other epidemiology problem can be analysed in future. 
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Appendix 5: ACTIVITY’S PHOTO 
 
 

                                         
Photo 1. The discussion to prepare some papers 

 
 

Photo 2. The activity to prepare some papers for conference 
 

 
  

Photo 3. Presentation of first result in Kuala Lumpur 
 

 
 

 Photo 4. Presentation for the second paper in Kuala Lumpur  
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