DAFTAR GAMBAR

		11000
Gambar 2.1.	Tanaman kelapa sawit	5
Gambar 2.2.	Tandan kosong kelapa sawit	6
Gambar 2.3.	Karbon aktif bentuk serbuk	8
Gambar 2.4.	Karbon aktif bentuk granular	9
Gambar 2.5.	Karbon aktif bentuk pellet	9
Gambar 2.6.	Struktur fisika karbon aktif	9
Gambar 2.7.	Struktur kimia karbon aktif	10
Gambar 2.8.	Ilustrasi untuk elemen konstruksi MOFs fungsional	11
Gambar 2.9.	Asam tereftalat	12
Gambar 2.10	Sel satuan dalam 2D	13
Gambar 2.11	. Tiga jenis sel satuan kubik	14
Gambar 2.12	. Sel satuan umum dengan sisi a, b, c dan sudut α , β , γ	14
Gambar 2.13	Tujuh sistem kristal	15
Gambar 2.14	Sel satuan heksagonal	15
Gambar 2.15	Sistem kristal kubik dan bidang kristal (a, 0, 0)	16
Gambar 2.16	Bidang kristal (110)	17
Gambar 2.17	Bidang kristal (111)	17
Gambar 2.18	Bidang kristal (210)	17
Gambar 2.19	Satuan sel fcc (100) muka	18
Gambar 2.20	Pandangan mata burung konvensional dari bidang (100)	18
Gambar 2.21	. Sel satuan fcc (110) muka	19
Gambar 2.22	Pandangan mata burung konvensional dari bidang (110)	19
Gambar 2.23	Bidang permukaan fcc (110), misalnya Cu(110)	20
Gambar 2.24	. Sel satuan fcc (111) muka	21
Gambar 2.25	Bidang permukaan fcc (111), misalnya Pt (111)	21
Gambar 2.26	. Rentang bidang Indeks Miller yang berbeda	22
Gambar 2.27	. Sel satuan bcc (100) muka	22
Gambar 2.28	. Bidang permukaan bcc (100), misalnya Fe (100)	22
Gambar 2.29	. Sel satuan bcc (110) muka	23
Gambar 2.30	Bidang permukaan bcc (110), misalnya Fe (110)	23

Gambar 2.31	. Tampilan atas permukaan bcc (111), misalnya Fe (111)	23
Gambar 2.32	. Tampak samping permukaan bcc (111), misalnya Fe (111)	24
Gambar 2.33	Proses <i>batch</i>	27
Gambar 2.34	Gelombang elektromagnetik	29
Gambar 2.35	Prinsip spektroskopi FTIR	30
Gambar 2.36	Klasifikasi isoterm BET	33
Gambar 3.1.	Sintesis MOFs Cu(TAC)	39
Gambar 3.2.	Sintesis KA-Cu(TAC)	40
Gambar 3.3.	Desain penelitian	44
Gambar 3.4.	Bagan alir penelitian preparasi TKKS	45
Gambar 3.5.	Bagan alir penelitian kadar air biosorben	45
Gambar 3.6.	Bagan alir penelitian karbonisasi	46
Gambar 3.7.	Bagan alir penelitian aktivasi karbon	46
Gambar 3.8.	Bagan alir penelitian sintesis MOFs Cu(TAC)	47
Gambar 3.9.	Bagan alir penelitian sintesis KA-Cu(TAC)	47
Gambar 3.10	. Bagan alir penelitian preparasi adsorpsi variasi massa	48
Gambar 3.11	. Bagan alir penelitian preparasi adsorpsi variasi konsentrasi	48
Gambar 3.12	. Bagan alir penelitian preparasi adsorpsi variasi waktu	49
Gambar 3.13	. Tahapan pembuatan larutan standar Fe 20 ppm 100 mL	49
Gambar 4.1.	Biosorben TKKS setelah dicuci	52
Gambar 4.2.	Karbon TKKS	52
Gambar 4.3.	KA TKKS	53
Gambar 4.4.	Kerangka MOFs Cu(TAC) dilihat dari sumbu a	54
Gambar 4.5.	Spektrum FTIR MOFs Cu(TAC) dan KA-Cu(TAC)	55
Gambar 4.6.	Pola XRD KA, MOFs Cu(TAC) dan KA-Cu(TAC)	57
Gambar 4.7.	Analisis SEM KA, MOFs Cu(TAC) dan KA-Cu(TAC)	59
Gambar 4.8.	Karakterisasi EDX KA	60
Gambar 4.9.	Karakterisasi EDX MOFs Cu(TAC)	61
Gambar 4.10	. Karakterisasi EDX KA-Cu(TAC)	61
Gambar 4.11	. Kurva isoterm KA, MOFs Cu(TAC) dan KA-Cu(TAC)	62
Gambar 4.12	. Ilustrasi sintesis KA-Cu(TAC)	63
Gambar 4.13	Pori distribusi KA, MOFs Cu(TAC) dan KA-Cu(TAC)	63

Gambar 4.14. Kapasitas penyerapan variasi massa	64
Gambar 4.15. Kapasitas penyerapan variasi konsentrasi	65
Gambar 4.16. Kapasitas penyerapan variasi waktu kontak	66
Gambar 4.17. Linearisasi adsorpsi isoterm Langmuir	.68
Gambar 4.18. Linearisasi adsorpsi isoterm Freundlich	.68
Gambar 4.19. Linearisasi kinetika pseudo orde dua KA dan KA-Cu(TAC)	.71

