Effect of Ethanol Extract of Lemongrass Plant (Cymbopogon Citratus), Ginger (Zingiber Officinale Rosc.), Pandan Leaf (Pandanus Amaryllifolius), and Cinnamon (Cinnamomum Burmanii) on Albumin and Blo submission date: 19-May-2023 07:36AM/UT(±0700) witaningsih **Submission ID: 2096647757** File name: B._Duma-ICIESCE_2022.pdf (232.71K) Word count: 3570 Character count: 19073 Effect of Ethanol Extract of Lemongrass Plant (Cymbopogon Citratus), Ginger (Zingiber Officinale Rosc.), Pandan Leaf (Pandanus Amaryllifolius), and Cinnamon (Cinnamomum Burmanii) on Albumin and Blood Globulin Levels in Wistar Rats (Rattus Norvegicus) Given High Fat Ida Duma Riris¹, Marini Damanik², Tita juwitaningsih³, Romondang FransiskaTampubolon⁴ and Ely Sabet Pratiwi Siagian⁵ {idadumariris@unimed.ac.id} Chemistry Departement Faculty of Matematics and Natural Science UniversitasNegeri Medan Abstract. This study aimed to determine the administration of a mixture of lemongrass ethanol extract (Cymbopogon citratus), ginger (Zingiber officinale Rosc.), pandanleaves (Pandanus amaryllifolius), and cinnamon (Cinnamomum burmanii) against high fat-induced blood albumin and globulin levels of wistar rats. The method wascarried out by dividing the mice with 7 treatment groups and 4 tests, including KO + (Groups given standard feed); KO- (Controls fed with high-fat standard an feed); K1+ (Simvastatin-given controls); K1; K2; K3and K4 at a dosage of 100,200,300,and400 mg/Kg BB plant extract mixture of ginger, lemongrass, cinnamon and pandan leaves). The data was analyzed with SPSS software for windows. The results showed that giving a mixture of ethanol extracts of lemongrass plants, ginger, pandan leaves, and cinnamon affected the blood albuminand globulin levels of wistar rats. **Keywords:** Albumin and Globulin; ethanol extract; mixing of : lemongrass, ginger, pandan leaves, and cinnamon ## 1 Introduction Albumin is the largest protein in the blood, and has an impact on the binding and transport of endogenous and exogenous substances, such as drugs. Since the distribution of the drug in the body is bound by the albumin fraction, this happens. When albumin levels are low, the protein-bound fraction of the drug decreases, which can lead to undesirable pharmacological side effects¹. According to hospital malnutrition have hypoalbuminemia, or blood albumin levels of less than 3.5 g/dL.² Globulins are blood proteins that help the immunesystem and transport steroid hormone systems, lipids, and fibrinogens, which help blood clotting and regulate circulatory function³. Alpha globulins, beta globulins, gamma globulins, macroglobulins, and transcobalamins are various types of globulins that operate as circulatory ions, fatty acids in the immune system, and antibodies⁴. Gamma globulin, also known as immunoglobulin plays an important role in this situation⁵. Immunity refers to the body's ability to resist the attack of the disease. When harmful organisms invade the body, lymphocytes and antibodies are activated, resulting in an increase in immunity. If the body's immunity is disturbed, germs can easily attack it. Cholesterol is one of the disorders that wreak havoc on the a mune system. The transport of cholesterol begins in the liver, and must be packaged into lipoproteins, such as High Density Lipoprotein(HDL), Low Density Lipoprotein (LDL), and Very Low Density Lipoprotein (VLDL), in or 13 to be disseminated throughout the organs. During the infection phase, lipoproteins play a role in the pathophysiological process of the body's immunological response. Conversely, high LEVELS of HDL will cause the immune system to react negatively. As a result, it is very important to strengthenthe immune system, which can be achieved using secondary metabolite chemicals found in plants. Chemicals that can boost immunity can be found in medicinal plants that act as an effector on the immune system and regulate immunity. Furthermore, flavonoids have the ability to lower HMG-CoA reductase, an enzyme involved in the formation of cholesterol8. Like the sijukkot plant which has flavonoid compounds, it is also able to reduce cholesterol levels in high fatinduced wistar-rats⁹. Cinnamon (Cinnamonum burmanii), Lemongrass (Cymbopogon citratus), Ginger (Zingiber officinale Rosc.), and pandan leaves (Pandanus amaryllifolius), are spices commonly used in Indonesia to lower cholesterol, blood sugar levels, as well as as antiviral, antifungal, and antibacterial 10. Secondary metabolites such as tannins, phenolics, flavonoids, quinones, saponins, monoterpenes, and sesquiterpenes were found during phytochemical screening of cinnamon bark simplisia11. The effect of ethanol extracts of lemongrass (Cymbopogon citratus), ginger (Zingiber officinale Rosc.), pandan leaves (Pandanus amaryllifolius), and cinnamon (Cinnamomum burmanii) on cholesterol levels in this study we also reported how albumin albumin and globulin levels in male rats of wistar strain. Measurement of album and globulin levels was carried out by folin's phenol method. Mean differences fromeach group were analyzed statistically using Anova One Way using SPSS For Windows software. # 2 Material and Method ## 2.1 Tools The tools used in this study were beaker glass 200, 100, 50 ml, stirring rod,measuring flask 50 ml, micropipette, drip pipette, injection syringe 3 ml, 3 ml bending syringe, analytical balance, test tube, tube rack, measuring cup 10 ml, spray bottle, animal cage and maintenance, blender, flour sieve, scissors, knives, paraffin tubs, plastic jars, hot plates, evaporation devices vacuum rotary evaporators (Heidolph), drying ovens, Funnel bunchers, Glass jars, Reflux, distillation, funnels, funnels and UV VIS spectrophotometers. ## 2.2 Material Lemongrass plants (Cymbopogon citratus), ginger (Zingiber officinale Rosc.), pandan leaves (Pandanus amaryllifolius), and cinnamon (Cinnamonumburmanii) Ethanol 96%, Na2SO4 22.5%, Simvastatin, chloroform, NaOH, Na-CMC (Carboxy Methyl Cellulose), filter paper, folin's phenol reagen 3 aluminum foil, tissues, and aquades. The test animals used in this study were obtained from the animal house of the Faculty of Mathematics and Natural Sciences, Medan State University Method. This research started from sampling in Sukarame village, Pematang Tanah JavaVillage, Tanah Java District, North Sumatra Province. ## 2.3 Sample Preparation Sample preparation was carried out, as much as ginger, lemongrass, pandan leaves, and cinnamon, each of which was 5kg, 5kg, 113, and 1/2kg of the plant then washed thoroughly with water. Plants are dried using an oven with a temperature of 40-500 C for 6-8 hours (H After drying the leaves are grinded to increase the surface area so that plant powder can be extracted as much as possible, with the hope that the metabolite content of the sample is not damaged. It is then sifted through a 60 mesh sieve after blending. ## 2.4 Rats Cage Preparation The test animals used in this study were male rats of the Wistar Strain which were in the range of 2-3 months and the weight of mice ±200 grams. ## 2.5 Plants Extraction The dry powder from the plant was weighed ±200grams for Ginger and Lemongrass and 50 grams for cinnamon and pandan leaves, respectively. Then it is put into a container and extracted using 96% ethanol by the maceration method. The maceration procedure is repeated three times for a total of 3x24 hours, and filtrate and residues are obtained using a Buchner filter. To make the extract, the filtrate is thickened using a vacuum rotary evaporator. To prevent the extract from clumping, the extract obtained is stored in a glass jar, wrapped in aluminum foil, and stored in a cooler. ## 2.6 Treatment of Test Animals In this study, an experimental design in the 5 m of a Complete RandomizedDesign was used. An experiment was conducted on 28 wistar male rats aged 2-3 rinths with a body weight of 100 - 200grams were kept in healthy conditions. Adaptation was carried out for 7 days, after which high-fat feeding was carried out consisting of 30grams of quail egg yolk, PTU (Propyltiourasil) 100 mg 0.1%, and water in 1L for 21 days. Blood draw is carried out from the eyes of rats and then put into a blood collection tube, then the serum is taken by inserting 2 mL of blood into a clean and dry tube then allowed to stand for 15 minutes. Then for 15 minutes, it was centrifuged at a speed of 3000 rpm. The serum is immediately removed with a pip 1 e and placed in another clean and dry tube. This is a clear light yellow coating on the top. The test animals were divided into 7 treatment groups, each treatment consisted of 3 mice. The treatment groups included: Group K0 (+), (negative with standard feed and high-fat feed, K+ group, that is, rats that were given the drug simvastatin orally Groups of K1, K2, K3 and K4 rats were given plant ethanol extracts of 100 mg, 200mg, 300mg and 400mg/kg BB, respectively. Intra-oral administration of simvastatin 4.5 mg/kgBB for 30 g ys the treatment of 7 groups of rats remained fed and drinking. On day 30 all rats measured albumin and globulin level 1 Measurement of blood albumin and globulin levels was performed by Folin's Phenol method. Mean differences from each group were analyzed statistically using Anova One Way using SPSS For Windows software. ## 2.7 Blood Draw for Level Testing For blood draws, it starts by making the rat faint and then blood is drawn using spoits on the eyes. After that it is allowed to stand for \pm 1 hour until a separate serum is visible. Then a centrifuge is carried out on the serum. After that, measurements of albumin and globulin levels are carried out. ## 2.8 Measurement of Albumin and Globulin Levels Measurements are carried out by Folin's Phenol method with the following steps: Table 1. Rat Albumin and Globulin Measurement | Material | Standard
(Tube 1) | Albumin
(Tube 2) | Globulin
(Tube 3) | |------------------|----------------------|---------------------|----------------------| | Filtrate Albumin | - | 5ml | - | | Standar | 4ml | - | - | | Aquadest | 25ml | 25ml | - | | NaOH 5N | 2ml | 2ml | 2ml | | Folin's Fenol | 2ml | 3ml | 3ml | ## 3 Results and Discussion ## 3.1 Results The maceration process is carried out by mixing the plant simplicia powder withethanol solvent and allowed to stand for 3x24 hours with three repetitions whilestirring. Then filtration is carried out using vacuum to separate the filtrate with theamendment. The ethanol extraction process from plant powder produces a viscous extract through a solvent separation process with a Randemen rotary evaporator obtained as follows: Table 2. Plant Extract Amendments | Plant | | Amendments (%) | | |---------------|--------|----------------|--| | Ginger | 7,7 15 | 8,9 | | | Lemongrass | | 16 | | | Sweet skin | | 13 | | | Pandan leaves | | 29 | | Rat Weight Measurement. Measurement of the body weight of rats is carried out once a week. On the 30th day after the experiment was carried out the last weight measurement. Measurements showed that mice fed a diet high in fat, simvastatin, and plant extract doses experienced weight gain as follows table. Table 3. Rat Weight Loss Before and After Treatment | Treatment | N | Initial weight | Weight After Treatment | |-----------|---|----------------|------------------------| | KO(+) | 4 | 135±2,8,32 | 16,25±30,31 | | KO(-) | 4 | 1321,25±5,31 | 161,25±8,53 | | K+ | 4 | 119,25±2,21 | 143,25±1,25 | | K1 | 4 | 145,25±8,84 | 179,75±14,31 | | K2 | 4 | 150,75±3,3 | 203,75±5,67 | | K3 | 4 | 140,5±3,69 | 175,75±12,6 | | K4 | 4 | 137,5±7.55 | 168±2.3 | Information KO(+): The group to which the standard feed is given KO(-): The group given standard feed and high-fat feed K+: The group given standard feed, high-fat feed, and simvastatin K1, K2, K3 and K4: The group given standard feed, high-fat feed and plant extract doses of 100mg/kg BB, 200mg/kg BB, 300mg/kgBB/400kgBB Figure 1. Rat weight gain increased weekly by giving plant extracts in 4doses and high-fat feeding Measurement of Blood Albumin and Globulin Levels in Rats. The results of serum blood analysis in rats that have been given high-fat feed and extracts of lemongrass, ginger, pandan leaves and cinnamon are shown in the following table: Table 4. Rat Blood Albumin and Globulin Levels After Treatment | | Group | Albumin | Globulin | | |---------|------------|-----------|----------|----------| | | K0(+) | 4,56±0,11 | 4,1±0,11 | | | | K0(-) | 5,52±0,55 | 3,8±0,22 | | | / / | K+ | 4,72±0,26 | 3,4±0,24 | | | 1 81 | RI | 5,5±0,36 | 3,5±0,24 | 135 | | 1 8/3 | K2 | 5,52±0,20 | 3,8±0,05 | 1/1/2 | | 1 6/1/1 | K3 | 5,75±0,31 | 4,0±0,21 | クリテトリフィル | | 11.11 | K4LLL LULL | 5,96±0,56 | 4,3±0,11 | ANNE CEG | | 4 | JNIVER | SITY | 7 | | Blood Albumin And Globulin Levels In Wistar Rats (Rattus Norvegicus) GivenEthanol Extract Of Lemongrass Plant, Ginger, Pandan Leaves And Cinnamon. Figure 2. Blood Albumin And Globulin Levels In Wistar Rats (Rattus Norvegicus) Given Ethanol Extract Of Lemongrass Plant, Ginger, Pandan Leaves And Cinnamon ## 3.2 Discussion the maceration method using ethanol solvent. The use of ethanol is based on itspolar properties so that it can be used to identify the presence of flavonoid compounds. Extraction by maceration with ethanol solvent is good enough to obtain plant extracts¹². The maceration process is carried out by mixing the plantsimplicia powder with ethanol solvent and allowed to stand for 3x24 hours withthree repetitions while stirring. Then filtration is carried out using vacuum to separate the filtrate from the amendment. The ethanol extraction process from plant powders produces a viscous extract through a solvent separation process. Feeding. The feed given to rodents is standard feed and high-fat feed. This is in accordance with the parameters tested, namely cholesterol test and blood globulin albumin test. The standard feed given is 552 sp feed and the high-fat feed given contains quail egg yolk, animal fat with a ratio of 1:5 and propyltiourasil (PTU) 0.1%. The administration of propyltiouracyl aims toinhibit the formation of thyroid hormones so that it can reduce hormone levels in the body. The manufacture of high-fat feed was carried out by adding 50gr of puyub egg yolk, 10 ml of animal fat and 0.06gr of PTU then in czech as much as 2 ml to the experimental rats. Effect of Dosage on Rat Weight Loss. This study used 28 white male rats (Rattus Norvegicus) with Usivision into 7 experimental groups with 4 male rats each. Before the treatment, adaptation was carried out for 7 days then high-fat feed was given for 14 days and then given a dose of plant extract for 14 days. On the 14th day after being given the plant extract, a blood draw was then measured blood albumin and globulin levels in rats. Rats' weight at the beginning and end of treatment tended to increase. The first data test with the Shapiro Wilk normality test with a value of sig>0.05 or H0 was received. Therefore, the initial and final rat body weight data after the treatment were normally distributed. Then data analysis was carried out on the Test of Homogenity of Variances obtained an initial body weight sig value of 0.012 and a final body weight sig of 0.083. Therefore the initial body weight group obtained sig=0.012 < 0.05 which showed inhomogeneous data and the final body weight UNIVERSITY group obtained sig=0.083>0.05 indicating homogeneous dataor H0 was received. This suggests that dosing in experimental animals had an effect on rat weight gain. This is because one of the extract contents is the gingerplant which contains protein, carbohydrates and energy so that experimental ratsexperienced weight gain¹³. Effect of Dosage on Rat Albumin and Globulin Levels. With more than 60% of the total protein in plasma being albumin, it is the most common protein in human plasma. The binding and transport of endogenous and exogenous molecules, including drugs, is influenced by albumin levels. This is possible because the albumin fraction has an impact on how the drug is distributed throughout the body. When albumin levels are low, the protein-bound fraction of the drug decreases, which can lead to undesirable pharmacological side effects¹. Globulins are blood proteins that help the immunesystem by transporting steroid hormones, lipids, and the fibrinogen 15 lem in thebloodstream and aiding in the regulation of blood circulation¹⁴. The results of the analysis test using the Shapiro-Wilk normality test showedthat the entire data was normally distributed. Based on the analysis of albumin data obtained, the sig value in the Test of Homogenity of Variances was 0.044. Based on a sig value greater than 0.05, then H0 is rejected. The data from the anova analysis show 7 f count of 11.229 and f table (0.05) of 2.57 where obtained f count was greater than f table. It can be concluded that the dosing of ethanol extract of lemongrass plants, ginger, pandan leaves, and cint thon has an effect on increasing blood albumin levels in rats. Analysis of globulin data using Test of Homogenity of Variances obtained sig data of 0.021 < 0.05, H0 was rejected. T16 nova analysis data showed a calculated of 11.367 and f of the table (0.05) of 2.57. Where the calculated f value is greater than the f table which shows that ethanol extracts of lemongrass, ginger, pandan leaves and cinnamon affect the stability of blood globulin levels in rats. Albumin levels in the group that were only given standard feed had normal albumin levels, then albumin decreased significantly in the treatment group of mice fed high-fat feed. This is because rats have experienced hypercholesterolemia. This decrease is because lipids are involved in the regulation of cytokine levels which causes plasma leakage and extravascular plasma release which results in a decrease in albumin levels 7 . In the administration of dose variations of plant ethanol extract, albumin levels tend to increase a significant increase was shown at a dose of $400\,$ mg / Kg BB, which was 4.3 g / dL. Normal globulin levels in mice ranged from 2.4-3.9 g/d 15 . From the data showed globulins in mice in each experimental group were above normal. So it can be said that the administration of extracts of lemongrass, ginger, pand an leaves and cinnamon can increase or stabilize globulin levels in the blood. ## 4 Conclusions and Suggestions ## 4.1 Conclusions Based on the research that has been carried out, it can be concluded that: The administration of ethanol extracts of lemongrass plants (Cymbopogonciratus) ginger (Zingeber officinale osc.), pandan leaves (Pandanusamarylifolius), and cinnamon (Cinnamomum burmanii) on albumin and bloodglobulin levels in wistar rats has an influence in raising albumin levels and and administration of the conclusion co UNIVERSITY ## 4.2 Suggestion It is recommended that further studies be carried out with more variations in concentration and the period of time carried out to obtain a more effective dose in raising blood albumin and globulin levels using lemongrass plants (Cymbopogon ciratus), ginger (Zingeber officinale Rosc.), pandan leaves (Pandanus amarylifolius), and cinnamon (Cinnamomum burmanii). Given that Carbohydrate metabolism is closely related to diabetes mellitus disease ¹⁶. It is necessary to study the antidiabetic proliferation of these plant mixtures against the inhibition of the enzyme amylase invitro and by using experimental animals invivo. Aknowledgment. I would like to thank the State University of Medan, who funded this research with a contract No: 0229/UN 33.8/PPKM/PD/2022 ## References - [1] Nugroho, M. (2013). Uji biologis ekstrak kasar dan isolat albumin ikan gabus (Ophiocephalus striatus) terhadap berat badan dan kadar serum albumin tikus mencit. Teknologi Pangan: Media Informasi dan Komunikasi Ilmiah Teknologi Pertanian, 5(1). - [2] Soeters, P. B., Wolfe, R. R., & Shenkin, A. (2018). Hypoalbuminemia: Pathogenesis and Clinical Significance. Journal of Parenteral and Enteral Nutrition, 43(2), 181–193. Portico. https://doi.org/10.1002/jpen.1451 - [3] Rahman, A., Rusli, R., Isa, M., Sayuti, A., & Roslizawaty, R. (2018). 5. Albuminand Globulin Levels of Sumatran Elephants' (Elephan maximus sumatranus) Blood at Elephant Conservation Center of Saree, Aceh Besar, Jurnal Medika Veterinaria, 12(1), 32-35. - [4] Iskandar, A. B., Pujaningsih, R. I., & Widiyanto, W. (2020). Pengaruh multinutrisi blok (MNB) sebagai pakan pelengkap terhadap kadar albumin, globulin dan perbandingan A/G pada kambing lokal. Jurnal Sain PeternakanIndonesia, 15(2), 132-137. - [5] Widhyari, S. D., Esfandiari, A., Sutama, I. K., Widodo, S., Wibawan, I. W. T., & Ramdhany, R. R. (2017). Profil Imunoglobulin-G Serum Kambing Peranakan Etawah Bunting yang Diberi Imbuhan Pakan Mineral Seng, Jurnal Veteriner Maret, 18(1), 24-30. - [6] Sukendra, D. M. (2015). Efek olahraga ringan pada fungsi imunitas terhadap mikroba patogen: infeksi virus Dengue, Media Ilmu Keolahragaan Indonesia, 5(2), 57-65. - [7] Yati, A. W., & Nababan, R. M. (2017). Hubungan Kadar Kolesterol Total dan Kadar Albumin dengan Kebocoran Plasma pada Demam Berdarah Dengue. Jurnal Majority, 6(3), 148-152. - [8] Artha, C., Mustika, A., & Sulistyawati, S. W. (2017). Pengaruh Ekstrak daun singawalang terhadap kadar LDL tikus putih jantan hiperkolesterolemia. eJournal kedokteran Indonesia. 5(2); 105-109. - [9] Anti-Hyperlipidemia Effects of Sijukkot Leaf Extract Ethanol (Lactuca Indica) (2022). Indian Journal of Forensic Medicine & Camp; Toxicology, 16(2) https://doi.org/10.37506/ijfmt.v16i2.18090 - [10] Repi, N. B., Mambo, C., & Wuisan, J. (2016). Uji efek antibakteri ekstrak kulitkayu-manis (Cimnamomum burmannii) terhadap Escherichia coli dan Streptococcus pyogenes. Jurnal e-Biomedik (eBm), 4(1), 1-5. - [11] Hananti, R. S., Hidayat, S., & Yanti, L., (2012). Uji Aktivitas Antidiabetes Ekstrak Etanol Kulit Kayu Manis (Cinnamomum Burmanii Nees Ex. Bl.) Dibandingkan Dengan Glibenklamid Pada Mencit Jantan Galur Swiss Webster Dengan Metode Toleransi Glukosa, Jurnal Sains Dan Teknologi Farmasi Indonesia, Indonesian Journal Of Pharmaceutical Science and Technology, 1(1): 13-21. - [12] Agustina, E., Andiama, F., Lusiana, N., Purnamasari, R., & Hadi, M. (2018). Identifikasi senyawa aktif dari ekstrak daun Jambu Air (syzygium aqueum) dengan perbandingan beberapa pelarut pada metode Maserasi. Jurnal Biotropic, 2(2), 108-118. - [13] SARI, D., & NASUHA, A. (2021). Kandungan Zat-Gizi, Fitokimia, danAkúvitas Farnakologis pada Jahe (Zingiber officinale Rosc.). Tropical Bioscience; Journal of Biological Science, 1(2), 11-18. [14] Rahman, A., Rusli, R., Isa, M., Sayuti, A., & Rosliz, awaty, R. (2018). 5. Albumin and Globulin Levels of Sumatran Elephants' (Elephas maximus sumatranus) Blood at Elephant Conservation Center of Saree, Aceh Besar, Jurnal Medika Veterinaria, 12(1), 32-35. - [45] Wolo, K. B. R., Esfandiari, A., Murtini, S., & Wulansari, R. (2019). Dinamika Total Protein Serum Tikus Putih (Rattus novergicus) yang Diberi Mikrokapsul Imunoglobulin-G Anti-H5N1. Jurnal Veteriner Desember, 20(4), 504-510. [16] Nelson, D. L., & Cox, M. M. (2009). Lehninger Biochemie. Springer-Lehrbuch. https://doi.org/10.1007/978-3-540-68638-5 THE Effect of Ethanol Extract of Lemongrass Plant (Cymbopogon Citratus), Ginger (Zingiber Officinale Rosc.), Pandan Leaf (Pandanus Amaryllifolius), and Cinnamon (Cinnamomum Burmanii) on Albumin and Blo | ORIGINALITY F | REPORT | |--------------------|---| | 8%
SIMILARITY | 7% 3% 1% INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS | | PRIMARY SOU | RCES | | | mt.com
ernet Source 3% | | | o.unnes.ac.id
ernet Source 1 % | | | ubmitted to Universitas Negeri Medan 1 % | | 4 W | ww.ncbi.nlm.nih.gov <1 % | | | 23dok.com
ernet Source THE | | 6 1 _{Int} | library.net <1 % | | fc D | N Indasari, A P W Marhendra, A W /ardhana. "Extract Bee Propolis (Trigona sp) or Preventive Increase Protease Activity and efect of Trachea Histology in Rats (Rattus orvegicus) Exposed to Cigarette Smoke", IOP | # Conference Series: Earth and Environmental Science, 2019 Publication | 8 | etheses.uin-malang.ac.id Internet Source | <1% | |----|---|-----| | 9 | S. Silaban, B. Sinaga, M. Damanik, P. M. Silitonga. "EFFECTIVE METHODS OF PYRIDOXINE SUPPLEMENTATION IN LAYING HENS TO ALBUMIN AND GLOBULIN LEVELS", Rasayan Journal of chemistry, 2020 Publication | <1% | | 10 | jrssem.publikasiindonesia.id Internet Source | <1% | | 11 | www.ijsrp.org Internet Source | <1% | | 12 | Suarez-Lopez, Jose R., Duk-Hee Lee, Miquel Porta, Michael W. Steffes, and David R. Jacobs. "Persistent organic pollutants in young adults and changes in glucose related metabolism over a 23-year follow-up", Environmental Research, 2015. Publication | <1% | | 13 | aasic.org
Internet Source | <1% | | 14 | eprints.poltektegal.ac.id Internet Source | <1% | Gad, Shayne. "Statistics for Toxicologists", Principles and Methods of Toxicology Fifth Edition, 2007. <1% Exclude matches Exclude quotes Exclude bibliography On THE