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Abstract  In local polynomial regression, prediction 

confidence interval estimation using standard theory will 

give coverage probability close to exact coverage 

probability. However, if the normality assumption is not 

met, the bootstrap method makes it possible to apply it. The 

working principle of the bootstrap method uses the 

resampling method where the sample data becomes a 

population and there is no need to know the distribution of 

the sample data is normal or not. Indiscriminate selection 

of smoothing parameters allows scatterplot results from 

local polynomial regressions to be rough and can even lead 

to misleading statistical conclusions. It is necessary to 

consider the optimal smoothing parameters to get local 

polynomial regression predictions that are not overfitting 

or underfitting. We offer two new algorithms based on the 

nested bootstrap resampling method to determine the 

bootstrap-t confidence interval in predicting local 

polynomial regression. Both algorithms consider the 

search for optimal smoothing parameters. The first 

algorithm performs paired and residual bootstrap samples, 

and the second algorithm performs based on residuals with 

residuals. The first algorithm provides a scatterplot and 

reasonable coverage probability on relatively large sample 

data. In contrast, the second algorithm is more powerful for 

each data size, including for relatively small sample data 

sizes. The mean of the bootstrap-t confidence interval 

coverage probability shows that the second algorithm for 

second-degree local polynomial regression is better than 

the other three. However, the larger the sample data size 

gives, the closer the closer the average coverage 

probability of the two algorithms is to the nominal 

coverage probability. 

Keywords  Bootstrap, Confidence Interval, Coverage 

Probability, Algorithm, Simulation 

1. Introduction

Bootstrapping is a resampling method with good 

performance for estimating interest statistics in 

nonparametric regression models. One is estimating the 

confidence interval of local polynomial nonparametric 

regression prediction. The advantage of the bootstrap 

method is that it can calculate confidence intervals without 

using the assumptions of standard theory [1]. The problem 

is that standard confidence intervals (normal distribution 

theory) based on an asymptotic approach can be wildly 

inaccurate in practice [2]. 

The literature [1-5] presents several methods of 

estimating second-order non-exact confidence intervals 

where samples are drawn using the resampling method. In 

general, there are two methods for bootstrap sampling: 

paired and residual bootstrap (see [1]). The principle of 

sampling drawing in both ways is based on parametric and 

nonparametric. Parametric is based on a selection from a 

particular distribution, while nonparametric is based on 

empirical distribution, and parametric properties are more 

exact than nonparametric properties [1]. However, there 

are data whose distribution is unknown so we can draw 

statistical conclusions based on nonparametric data. 

Bootstrap-t interval is a method for estimating certain 

statistical confidence intervals, widely applied in various 

fields of science related to statistical studies. As in 
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engineering, Zoubir [6] uses bootstrap-t intervals to 

determine interval estimates in signal processing 

applications such as radar, sonar and telecommunications. 

Jung [7] conducted a comparative study of three bootstrap 

interval estimation methods, including the bootstrap-t 

interval, in Generalized Structured Component Analysis 

(GSCA) which is widely used in economics and 

management. Next, Manly [8] applied the bootstrap-t 

interval to cases in biologies, such as survival and growth 

data 

Several researchers, see [9-12], have applied the 

bootstrap method to estimate the statistical confidence 

interval of interest in local polynomial regression. This 

study reviews the literature [13-15] to obtain a new 

algorithm for bootstrap-t intervals. The bootstrap 

prediction interval provides a coverage probability close to 

nominal coverage in a small sample without assumptions 

about the sampling distribution [13]. Polansky [14] 

revealed theoretical and empirical evidence showing that 

the bootstrap-t interval reasonably solves the problem of 

estimating nonparametric statistical intervals. However, 

the bootstrap-t prediction interval can cause bands to be 

widely and exhibit unstable behaviour. DiCiccio [2] stated 

that in relatively small data, the probability behaviour of 

the bootstrap-t interval coverage tends to be a conservative 

interval with superior coverage probability and highly 

variable. However, the simulation results [14] in section 3 

pp. 506-513 counter statement [2]. Two methods are 

offered [14] to stabilise the bootstrap-t interval: the 

smoothed bootstrap method and adding a constant to the 

empirical variance. Then, the recent literature [15] 

discusses the prediction limits of bootstrap on local 

polynomial regression. They offer a new algorithm using 

nested residual bootstrap resampling to predict the local 

polynomial regression prediction band boundary on the 

ecological response given by the predictor. Unfortunately, 

the scatterplot provides piecewise points that are not 

smooth, and the coverage probability is superior coverage 

for small data. 

This article offers a new algorithm for estimating the 

LPR prediction interval based on the diversity factor of the 

bootstrap resampling distribution. The bootstrap-t 

prediction interval is constructed based on two bootstrap 

sampling processes. This sampling process is known in 

bootstrap method terminology as nested resampling. The 

organisation of this article is as follows. Section 1 presents 

the background of this research. Section 2 summarises the 

theories and concepts related to low-order local polynomial 

regression and provides a detailed description of the new 

algorithm. In this section, Section 3 presents the simulation 

results for the generation of large and small samples by 

considering the noise variance. The last section provides 

conclusions and suggestions for further research. 

2. Materials and Methods

This section summarises the theory and concept of local 

polynomial regression. It then describes the bootstrap-t 

interval algorithm applied to the prediction of local 

polynomial regression. There are two algorithms offered 

based on nested bootstrap resampling. The first algorithm 

uses the principle of paired and residual bootstrap 

resampling. The second algorithm is only based on the 

residual bootstrap method. Both algorithms aim to 

stabilise the standard error that comes from sampling 

diversity. 

2.1. Local Polynomial Regression 

Local Polynomial Regression (LPR) is a nonparametric 

regression model that aims to obtain a smoother scatterplot 

of the relationship between the response variable and the 

dependent variable. The working principle is to smooth the 

curve using local weighted least squares from a certain 

point. The smoothing depends on two parameters: the 

smoothing parameter and the degree of the polynomial p. 

Smoothing parameter α determines the number of 

neighbouring points around the point of interest. At the 

same time, the degree of the polynomial p is the highest 

power of the predictor. Usually, low polynomial degrees 

are chosen, namely one and two. 

The local polynomial regression model is expressed in 

the form, 

i i i( ) ( ) ε , 1,2,..., ,y x f x i n     (1) 

where the smooth function f(xi) is unknown but estimated. 

Variable xi is an independent variable or predictor that is 

independent with an error εi. Meanwhile, the dependent 

variable y(xi) is the response variable from the model (1). 

The random variable εi is independently identically 

distributed, having a mean of zero, E(εi) = 0 and constant 

variance, Var(εi) = ζ2. 
Suppose that at the point x0, the function f has a 

derivative to the degree of the polynomial p, then the 

function f(xi) is an approximation of the Taylor expansion 

at the point of interest x0 (see [16]), 
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Point xi is a neighbouring point of x0, and the notation for 

points around x0 is denoted by ℕ(x0). The parameter α is a 

smoothing parameter whose value is between zero and one. 

The agreement will determine k = [nα], the number of 

points on the neighbours ℕ(x0). The polynomial match in 

(2) uses locally weighted least squares by minimising, 
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The weight value wi(x0) is obtained from the function 

wi(x0) = W(|x0− xi|/∆(x0)) where ∆(x0) is the maximum of 

the absolute distance for a point xi∈N(x0) to point x0. The W 
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function is a weight function that researchers usually 

choose, which has the following properties [17], 

1. W(u) > 0, for −1 < u < 1;

2. W(−u) = W(u);

3. W(u) is a non-increasing function for u ≥ 0;

4. W(u) = 0, for u ≤ −1 or u ≥ 1.

Cleveland [17] chooses the tricube weight function, 
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The choice of weight function in certain statistical 

studies is not a significant problem. We use the same 

weight function as [17]. 

Fan [18] derives the local weighted least squares 

solution to the problem (3) in the form of a matrix equation, 
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and the weighted diagonal matrix, W𝛂 = diag{wi(x0)} of 

size k×k. Prediction of local polynomial regression at point 

x0 can be written in the form, 

0 0 0

0
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
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2.2. Optimal Smoothing Parameter 

The smoothing parameter α and the sample size n 

determine the local window width or the proportion of 

observations balanced in each local polynomial regression. 

The selection α determines the smoothness of the 

scatterplot where it is close to zero, giving a very bumpy 

scatterplot and overfitting predictions. Meanwhile, for α 

close to one, it provides a smoother scatterplot but is far 

from the original data features (data characteristics) and 

gives an underfitting forecast. 

The response variable comes from the trigonometric 

function f(x) = Sin 2x, where the error is generated from 

the standard normal distribution with a mean of zero and a 

variance of 0.4, εi ~ N(0, 0.4). In contrast, the independent 

variable design is taken from the lower limit xmin = 0 and 

the upper limit xmax = 1.5π, which has the same distance. 

Then take the sample size for the paired bivariate variable 

(xi, yi) by as much as 50 points. Figure 1(a) is a first and 

second-degree LPR scatterplot for the value of α = 0.1. 

Figure 1 is a scatterplot of LPR predictions of degrees one 

and two with the choice of smoothing parameter values α = 

0.1, which is close to zero and α = 0.99, which is close to 

one. The response variable is derived from the 

trigonometric function f(x) = Sin 2x. The error is generated 

from a standard normal distribution with a mean of zero 

and a variance of 0.4, εi ~ N(0, 0.4). While the independent 

variable design is taken from the lower limit xmin = 0 and 

the upper limit xmax = 1.5π, which has the same distance, 

then take the sample size for the paired bivariate variable 

(xi, yi) by as much as 50 points. Figure 1(a) is a first and 

second-degree LPR scatterplot for the value of α = 0.1. 

The black curve is a first-degree LPR which is very 

undulating and gives a slightly accurate prediction of the 

value of the initial response. The second-degree LPR, 

shown by the red curve, produces a scatterplot of the 

piecewise-linear function. Almost all the predicted values 

are the same as the original response values. These curves 

provide overfitting predictions, which can be misleading 

because the variance becomes very large at the new point. 

The cause of the overfitting prediction on LPR is that there 

are quite a few points in ℕ(x0), so the scatterplot becomes 

piecewise-linear. Figure 1(b) shows the first and 

second-degree LPR scatterplots far from the original data 

features. The predictions produced by these two LPRs are 

often mentioned as underfitting, which has a high bias. The 

reason is that many points in ℕ(x0) are close to the size of 

the original sample data. 

The overfitting and underfitting predictions from fitting 

will give unreasonable inferences. Loader [19] expressed 

the need to control the fit of the curve by using the best or 

optimal parameter. One way to get the optimal parameter is 

using cross-validation, 
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where i
ˆ ( )iy x


 is the prediction of LPR at point xi by 

removing one point y(xi) on sample data. CV(α) behaviour 

is very sensitive to small sample data. The small sample 

size causes the CV(α) score to be monotonously increasing. 

The small size effect is because the 
T

  X W X  matrix in (5) 

becomes an ill condition or is known as non-invertible 

matrix terminology. 

The procedure for deriving an algorithm to get α optimal 

is as follows. 
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Figure 1.  Scatterplot of Predicted Local Polynomial Regression 

2.3. Optimal α Smoothing Parameter Search Algorithm 

1. Determining the lower and upper limits of the α

smoothing parameter. Give initial values starting

from α = 0.1 while [19] suggests 0.25. The simulation

results should show that if the α parameter is less than

0.1, it gives an ill condition.

2. Suppose that the sample data set is {(x1, y(x2)), (x1,

y(x2)), ⋯, (xn, y(xn))} and the initial value of the

smoothing parameter is denoted α1. For convenience,

sample data is denoted in the form,

2 nn1 1 2{( , ),  ( , ), ,  ( , )}.x y x y x y  

Next, there is an iterative process for α1 as follows. 

a. Take the point (x1, y1) as the test point.

b. Remove the point (x1, y1) from the sample data so

that the training data is without (x1, y1).

c. Apply α1 to formula (6) to predict 1ŷ . 

d. Storing the values, 1
ˆ ,y then repeating steps a to 

d for taking (x2, y2) as a test point and re-entering 

(x1, y1) into the training data and deleting (x2, y2). 

This process continues until the n-th sample 

point. 

e. Calculating the CV(α1) using the formula (7).

3. Take α2 = α1+δ1, where δ1∈(0,1) and perform the

process in step 2 to get CV(α2). We continue this

process and stop until αt = αt-1 + δt-1 is close to or equal

to the upper limit of αmax. Suppose the set Ω is a

collection of αt.

4. Determine the best or optimal α with the criteria,

 opt min CV( )
t

t


 


           (8) 
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The LPR scatterplot in Figure 2 uses the previously 

described sample data on f(x) = sin 2x. The α design space 

starts from αmin = 0.1 and αmax = 0.9 with an increase in of 

0.01. Figure 2(a) is a scatterplot of the first-degree LPR 

which gives a score of CVmin = 0.1938 for αopt = 0.17. 

Figure 2(b) is a scatterplot of the second-degree LPR, 

giving a score of CVmin = 0.1905 for αopt = 0.47. The 

simulation results show that the CVmin score of the 

second-degree LPR is smaller than the first-degree LPR. 

The αopt value of the first-degree LPR is close to αmin, while 

the second-degree LPR is close to the midpoint. 

Figure 3 applies the previously obtained optimal α 

smoothing parameter. The scatterplot of the black curve 

(degree one) is less smooth than the red curve (degree two). 

We should also consider that the smoothness of a curve is 

also influenced by the degree of the polynomial. The 

higher the degree of LPR, the smoother the scatterplot will 

be, and a soft curve will give less bias. However, a high 

degree of LPR has more factors that need to be considered 

in a model resulting in a more considerable variance. 

Researchers usually choose low polynomials: degrees one 

(linear) and two (squared). 

  

Figure 2.  Scatterplot of Cross-Validation 
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Figure 3.  Scatterplot of LPR with Optimal Smoothing Parameter 

2.4. Bootstrap-t Prediction Interval 

Estimating the predictive confidence interval for LPR 

requires a large data size, and the prediction residuals are 

normally distributed. Statistical inference in LPR 

predictions can be misleading if the data are not large and 

not normally distributed. The bootstrap method can be 

used if the requirements for statistical analysis are not met, 

such as a small sample size and the assumption of a 

normal distribution is not available. Estimating 

confidence intervals can use several bootstrap methods. 

Readers can read more about bootstrap intervals in the 

literature [1-6]. 

This study focuses on the Bootstrap-t confidence 

interval in LPR prediction. Furthermore, this confidence 

interval is called the bootstrap-t prediction interval for 

convenience. The following is a development and 

extension of the procedure from [1] on the bootstrap-t 

prediction interval at a point x0. Suppose the predicted 

expectation is equal to the actual value, 0 0
ˆE( ) ,y y  then 

the Z transformation can be expressed in the form, 

0 0

0

boot 0

ˆ
Z ,

SE ( )

y y

y


                 (9) 

where 
boot 0SE ( )y  is the estimated standard error of the 

defined B bootstrap sample, 

 
1/2

2

* *

boot 0 0 0

1

1
ˆ ˆSE ( ) ,

B
b

b

y y y
B 

  
  
  
        (10) 

with 
*

0ŷ  is the average of the B bootstrap sample defined, 

* *

0 0

1

1
ˆ ˆ

B
b

b

y y
B 

   

The y0 prediction confidence interval is based on the Z 

distribution, 
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0 upper boot 0 0 0 lower boot 0
ˆ ˆz SE ( ) z SE ( ).y y y y y       (11) 

Note that zlower and zupper are quantiles of the Z 

distribution which can be approximated using bootstrap 

quantiles, 

*

* 0 0

0 *

0

ˆ ˆ
Z ,

se

b

b

b

y y
               (12) 

where *

0se b  is an estimate of the standard error of the 

replication of the 
*

0
ˆ by  statistic from the second bootstrap 

sample, which will be explained in detail in the algorithm. 

Efron [1] suggests 25 times is enough to get a stable 

standard error. If define zlower = z*(γ/2) as the γ/2-th sample 

quantile of Z*1, Z*2, ⋯, Z*B, where γ is the level of 

significance, then P(Z ≤ zlower) = P(Z ≤ z*(γ/2) ≈ γ/2. In 

the same way it is defined that zupper = z*(1−γ/2) so that the 

form (11) can be expressed, 

*(1 γ/2) *(γ/2)

0 boot 0 0 0 boot 0

*(1 γ/2) *(γ/2)

boot 0 0 0 boot 0

*(γ/2) *(1 γ/2)

ˆ ˆ( z SE ( ) z SE ( ))

ˆ( z SE ( ) z SE ( ))

(z Z z ) 1 γ.

P y y y y y

P y y y y

P







     

       

    

 

(13) 

There are two stages of bootstrap sampling from the 

explanation above. The first step is to take the first 

bootstrap sample B times from the empirical distribution to 

determine the bootstrap standard error estimate, then from 

every second bootstrap sample B1 times to get an estimate 

of the standard error, *

0se .b  Based on this step, we derive 

two algorithms as follows. 

2.5. Algorithm-1: Residual-paired Bootstrap 

1. Determining the optimal α smoothing parameter 

using sample data, 

     1 1 2 2 n n, ,  , , ,  , .{ }x y x y x y  

2. Applying the results of step 1 to equation (6) to obtain 

a predictive data set, 

     1 1 2 2 n n
ˆ ˆ ˆ, ,  , , ,  , .{ }x y x y x y  

3. The first bootstrap sampling for b from 1 to B with 

the following steps. 

a. Perform paired bootstrap resampling of the original 

data {(x1, y1), (x2, y2),⋯, (xn, yn)} so that the b-th 

bootstrap sample is obtained, 

      * * * * * *

1 1 2 2 n n, , , ., , ,b b b b b bx y x y x y  

b. Applying the results in steps 1 and 3(a) into 

formula (6) to obtain the predicted set of the b-th 

bootstrap sample, 

 * * *

1 1 2 2 n n
ˆ ˆ ˆ( , ), ( , ), , ( , ) .b b bx y x y x y  

c. Determine the residual set {
*

1e ,
*

2e ,⋯,
*

ne } from the 

difference between b-th bootstrap predictions and 

b-th bootstrap sample, 
* *

i

*

ii .ˆe b by y   

d. The second bootstrap sampling for b1 from 1 to B1 

with the following steps. 

i. Sampling using residual bootstrap to determine 

b1-th bootstrap sample 

 1 1 1** ** **

1 1 2 2 n n
ˆ ˆ ˆ( , ), ( , ), , ( , ) ,

b b b
x y x y x y  

where 1 1** * **

i i i
ˆ ˆ e

b b
y y   with **

ie is retrieved in return 

from the residual set { *

1e , *

2e , ⋯, *

ne }. 

ii. Entering the data 1**

1 1
ˆ( , )

b
x y , ⋯ , 1**

n n
ˆ( , )

b
x y  into 

equation (6) to determine the prediction set of 

the b1-th bootstrap sample, 

 1 1 1** ** **

1 1 2 2 n n
ˆ ˆ ˆˆ ˆ ˆ( , ), ( , ), , ( , ) .

b b b
x y x y x y  

iii. Repeat steps i-ii as much as B1. 

iv. Determine the standard error estimate of the 

second bootstrap sample for each point using 

equation (10), 

 
1

1

1

1/2
2

*** **

i i i

11

1 ˆ ˆˆ ˆse ,
B

bb

b

y y
B 

  
  
  

  

where, 

1

1

1

****

i i

11

1ˆ ˆˆ ˆ ,
B

b

b

y y
B 

   

so the set of ordered pairs is 

 * * *

1 1 2 2 n n( ,se ),( ,se ), , ( ,se ) .b b bx x x  

4. Repeat step 3 much B times. 

5. Determine the estimated standard error of each first 

bootstrap sample for each point using equation (10) to 

get set V*1, V*2, ⋯, V*B where, 

 * * * *

1 1 2 2 n n( ,se ),( ,se ), , ( ,se ) .b b b bx x xV  

6. Determine the set of bootstrap quantiles using 

equation (12) for each bootstrap sample, Z*1, Z*2, ⋯, 

Z
*B where 

 * * * *

1 1 2 2 n n( , ), ( , ), , ( , ) .b b b bx z x z x zZ  

7. Sort from smallest to largest of the set, Z*1, Z*2, ⋯, 

Z
*B so that the (γ/2)-th bootstrap quantile is obtained, 

*(γ/2) *( /2) *( /2) *( /2)

1 1 2 2 n n{( , ),( , ), ,( , ).B x z x z x z  Z  

and the (1−γ/2)-th bootstrap quantile, 

*(1 γ/2) *(1 /2) *(1 /2) *(1 /2)

1 1 2 2 n n{( , ),( , ), ,( , ).B x z x z x z     Z  

8. Determine the lower and upper limits of the 

bootstrap-t prediction interval using the equation 

(13), 
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*(1 /2)

Lower 1 1 1 boot 1

*(1 /2)
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ˆ{( , SE ( )), ,

ˆ( , SE ( ))}n

x y z y

x y z y
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*( /2)

Upper 1 1 1 boot 1

*( /2)

n n n boot n

ˆ{( , SE ( )), ,

ˆ( , SE ( ))}.

x y z y

x y z y





  

 

CI
 

The difference between algorithm-2 and algorithm-1 is 

only in the first bootstrap sampling, where algorithm-2 

uses bootstrap residuals. The stages in algorithm-2 are 

written only different stages from algorithm-1. 

2.6. Algorithm-2: Residual-residual Bootstrap 

In algorithm-2, steps 1-2 are the same as in algorithm-1. 

3. The first bootstrap sampling for b from 1 to B with the 

following steps. 

a. Determine the residual set { 1e , 1e ,⋯, ne } which is 

the difference between the prediction and the actual 

value, ii i .ˆe y y  

b. Generating a bootstrap sample by resampling the 

bootstrap residual, 
* *

i i ieby y  , where 
*

ie  is taken 

with the return of the set of residuals step 3(a). So 

that the b-th bootstrap sample is obtained, 

      * * *

1 1 2 2 n n, , , ., , ,b b bx y x y x y  

Steps 3(c) to 8 in algorithm-2 are the same as in 

algorithm-1. 

3. Simulation Results 

The sample data design for the simulation of algorithms 

one and two is generated as follows. The independent 

variables follow the procedure in section 2.2. The response 

variable follows the trigonometric function f(x) = Cos 2x. 

The error is generated from the standard normal 

distribution with a mean of zero, and the variance of the 

error is 0.5. The simulation considers the assumption that 

the error is Gaussian distributed. The following research 

will discuss leverage and influence points, which may be 

outliers in nonparametric regression functions' x and y 

spaces. Outliers are unusual data points that have a 

dramatic impact on statistical inference. 

Figure 4 is the simulation result of algorithm-1 with the 

generation of sample data with a size of 100. The number 

of the first bootstrap sample B = 1000 times and the second 

bootstrap sample 100 times. So that there are 100000 times 

of replication, it is said to be quite an expensive simulation. 

The confidence level in the interval built is 95% or a 

significance level of γ = 0.05 is used. Figure 4(a) is a 

scatterplot of bootstrap-t prediction interval with a 

first-degree polynomial that has roughness or is more wavy. 

Figure 4(b) is a scatterplot of the second-degree LPR, 

which shows it is smoother than the first degree. The 

interval length at each point indicates that the 

second-degree LPR is longer than the first-degree. This 

will have the effect that the probability of coverage of the 

second-degree LPR prediction interval is closer to the 

nominal coverage probability than that of the first-degree 

LPR prediction interval. The coverage probability of the 

first-degree LPR in Figure 4(a) is 0.88, while the 

second-degree LPR in Figure 4(b) is 9.45. 

Figure 5 is the result of the simulation of algorithm-2 

using the same sample data generation process in Figure 4. 

The scatterplot in Figures 4 and 5 shows a view that is 

much different from one another. The scatterplot formed 

by algorithm-2 is smoother than algorithm-1. It is because 

Figure 5 has fewer waves than Figure 4. Next, the 

observations in Figure 5 show that the first-degree LPR 

leads to more wiggling than the second-degree LPR, which 

means that Figure 5(b) is smoother than Figure 5(a). The 

probability magnitude of the first-degree LPR prediction 

interval in algorithm-2 is 0.91, while the second-degree 

LPR in Figure 5(b) is 0.95. Algorithm-2 shows that the 

coverage probability for LPR degree one or two is close to 

the nominal coverage probability. 

3.1. Optimal Smoothing Parameter Effect 

How will it affect the bootstrap-t prediction interval if 

algorithm-1 and algorithm-2 do not use the optimal 

smoothing search parameter? However, it uses arbitrary 

parameter selection from values between zero and one. 

Simulation is carried out on the sample data to answer this 

question by selecting the smoothing parameter of α = 2/3. 

Figure 6 shows that the curvature of the lower and upper 

bounds of the interval of algorithm-1 does not follow the 

features of the prediction (curvature of the black line). 

Figure 6(a) has a coverage probability of 0.95 while Figure 

6(b) has a coverage probability of 0.98. Prediction interval 

becomes superior or becomes conservative interval. 

Figure 7 shows the curvature of the lower and upper 

bounds of the interval of algorithm-2 following the 

prediction features. However, the curve of the prediction is 

not in the middle of the coverage probability area. Figure 

7(a) shows the curvature of the prediction curve 

approaching the curvature of the lower limit, while Figure 

7(b) comes to the curvature of the upper limit of the 

interval. The coverage probability of the prediction interval 

in Figure 7(a) is 0.66, and Figure 7(b) is 0.89. It causes both 

prediction intervals to be anti-conservative or permissive 

because they are less than the nominal coverage 

probability. 
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Figure 4.  Scatterplot of Bootstrap-t Prediction Interval for Algorithm-1 
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Figure 5.  Scatterplot of Bootstrap-t Prediction Interval for Algorithm-2 
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Figure 6.  Scatterplot of Algorithm-1 with Smoothing Parameter Selection 
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Figure 7.  Scatterplot of Algorithm-2 with Smoothing Parameter Selection 

 

Figure 8.  Scatterplot of Algorithm-1 and 2 Increase in Sample Data Size 
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3.2. Increase in Sample Data Size 

The simulation performs ten major replications for each 

sample data size. The purpose and objective of conducting 

major replication are to stabilise the randomness of the 

sample data generation and to see statistical consistency. 

Because this simulation is expensive, major replication is 

only carried out in small quantities. The procedure for 

increasing the sample data size is by adding ten new 

sample data to the old sample data. We also consider the 

Monte Carlo simulation in [20] to measure performance on 

small sample data sizes. Figure 8 shows that algorithm-2 

for second-degree LPR (magenta line) performs better than 

the other three methods. Algorithm-1 with a second-degree 

LPR (blue line) shows that the coverage probability is still 

acceptable. The rate of convergence of the coverage 

probabilities generated by algorithm-2 for the 

second-degree LPR is faster than the other three. The more 

significant the increase in sample size indicates that the 

coverage probability of the four intervals is close to the 

nominal coverage probability. The reader can refer to the 

Appendix for the mathematical justification and proof of 

the two proposed algorithms where the sample data size 

goes to infinity. 

4. Conclusions 

The smoothness and fit of the scatterplot of the 

bootstrap-t prediction interval are influenced by the 

smoothing parameter and the degree of the polynomial. 

The smoothing parameter value taken close to zero gives a 

prediction of being overfitting, while the value of the 

smoothing parameter close to one gives a forecast of 

underfitting. Then the choice of any value of the smoothing 

parameter allows misleading conclusions. Finding the 

optimal smoothing parameter value is necessary to 

construct a reasonable confidence interval. The degree of 

local polynomial regression is also one of the determinants 

of the smoothness of the scatterplot. The simulation results 

show that the second-degree LPR gives a scatterplot with 

fewer waves or wobbles in the prediction curve than the 

first-degree LPR. 

The application of bootstrap resampling at the 

bootstrap-t prediction interval in local polynomial 

regression modelling provides two new algorithm 

proposals, namely algorithm-1 and algorithm-2. 

Algorithm-1 is based on paired and residual bootstrap 

resampling, while algorithm-2 is based on residual and 

residual bootstrap resampling. It shows that both 

algorithms do resampling twice, whereas the second 

resampling always uses residual bootstrap. The intent and 

purpose are always to use bootstrap residuals in the second 

resampling so that the variance appears is not too large or 

maintains the predictive features. Two algorithms for 

first-degree LPR provide a prediction interval that is 

coarser or more wiggling than second-degree LPR. The 

relatively large sample data coverage probability indicates 

that the second-degree LPR prediction interval is close to 

the nominal coverage probability. The increase in the 

sample data size indicates that algorithm-2 for 

second-degree LPR gives superior coverage probability 

results at each increase in the sample data size. Although 

the interval estimation is not from the exact interval theory, 

the bootstrap-t prediction interval from algorithm-2 with a 

second-degree LPR is more consistent and tends to the 

nominal coverage probability. However, this is in contrast 

to the prediction interval formed by algorithm-1 with 

first-degree LPR, which never reaches the nominal 

coverage probability. Algorithm-2 gives better results for 

relatively small sample data sizes. 

In general, the two proposed bootstrap-t prediction 

interval algorithms provide prediction intervals that are 

still acceptable and work well on relatively small sample 

data sizes. We conclude that the two algorithms will 

achieve the probability of nominal coverage if the size of 

the sample data and the size of many bootstrap samples are 

to infinity, see the Appendix. The choice is left to the 

researcher which one to choose or use. Future research 

allows us to examine the following two things: determining 

the best and most robust bootstrap interval. 

Appendix 

Wasserman [21] presents the pivot quantity into two 

different parts at the bootstrap-t interval. The first 

resampling uses pivot quantity, 

boot

ˆ ( ) ( )
( ) .

SE ( ( ))

n n

n

n

y x y x
Z x

y x


  

We assume a new point ( )ny x  whose value is unknown 

but will be predicted to use n data observed. The quantity 

of pivot based on the second resampling is 

*

*

*

ˆ ˆ( ) ( )
( ) .

se ( ( ))

b

b n n

n b

n

y x y x
Z x

y x


  

The second resampling principle uses the residual 

bootstrap residual method; see algorithm-1. Follow the 

same way in algorithm-1 to get an estimated Cumulative 

Density Function (CDF) bootstrap from 
* ( )b

nZ x , say 

*ˆ ( ( ))b

nG Z x , then we define 

* * *

1

1ˆ ( ( )) ( ( ) ( )),
B

b b b

n n n

b

G Z x I Z x z x
B 

   

where I is an indicator function. 
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Figure 9.  Estimating the 
* ( )b

nZ x  Distribution Using Algorithms-1 and 2 with LPR of Degrees One and Two 
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Efron [1], on page 47, shows that for the B bootstrap 

sample is getting bigger or going to infinity, it will provide 

an ideal bootstrap estimate. Suppose 
*ˆ( ( ))b

ng z x  is a 

bootstrap version to estimate the Probability Density 

Function (PDF). We assume that the
*ˆ( ( ))b

ng z x  approaches 

the distribution of standard normality probability with 

justification through simulations and propositions (further 

research as a theorem). Figure 9 is the simulation result of 

one major replication at point x = 2, which is not observed 

from the sample data n = 100 with the number of bootstrap 

samples, B = 1000. The design of the input point as the 

independent variable and the output as the dependent 

variable follows section 3. 

Figure 9(a) is a simulation result of algorithm-1 with a 

first-degree LPR with skewness and kurtosis, − 0.1511 and 

3.0420, respectively. Figure 9(b) is a simulation result of 

algorithm-2 with a first-degree LPR with skewness and 

kurtosis, − 0.1401 and 2.9791, respectively. Figure 9(c) is a 

simulation result of algorithm-1 with a second-degree LPR 

with skewness and kurtosis, − 0.0385 and 2.9080, 

respectively. Figure 9(d) is a simulation result of 

algorithm-2 with a second-degree LPR with skewness and 

kurtosis, − 0.0349 and 3.0145, respectively. The simulation 

results also support that algorithm-2 with a second-degree 

LPR is better at approaching the Z standard normal 

distribution. 

Proposition 

Let 
*ˆ ( ( ))b

nG Z x  be the ideal bootstrap CDF estimator; 

then
*ˆ ( ( ))b d

nG Z x  , where   is the standard normal 

CDF. 

If the condition satisfies the above proposition, it will 

give 

*( /2) /2

,
lim ( ) ( ) .

2
n

n B
P Z z P Z z  

 
     

The 
,

lim
n B 

 notation follows Simamora [22], who 

applies ideal bootstrap estimation and asymptotic theory to 

show that the bootstrap estimate for the kriging variance is 

close to zero. Consequently, for n and B to go to infinity, 

then 

* * 2

boot
, ,

1

ˆ ˆlim SE ( ( )) lim ( ),
n

B B

n n i
n B n B

i

y x l x 
   



    

where ̂  is the estimated standard deviation of the 

original sample data, and li is the weighted value. Finally, 

we conclude that Zn converges in the distribution to 

Z~N(0,1), thus giving /2 (1 /2)( ) 1P z Z z       as the 

nominal coverage probability. 
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