P5CS and HSP 81-2 Gene Expression Profile of Banana (Musa acuminata) in vitro Culture Under Salt Stress Condition

by Diky Setya Diningrat

Submission date: 08-Mar-2021 07:27AM (UTC-0800)

Submission ID: 1527452721 **File name:** 91-95.pdf (231.84K)

Word count: 3644

Character count: 18943

Journal of ONIMED **Plant Sciences**

ISSN 1816-4951

www.academicjournals.com

3 OPEN ACCESS

ISSN 1816-4951 DOI: 10.3923/jps.2016.91.95

Research Article P5CS and HSP 81-2 Gene Expression Profile of Banana (Musa acuminata) in vitro Culture Under Salt Stress Condition

^{1,2}Kusdianti, ³D.S. Diningrat, ¹Iriawati and ¹S.N. Widiyanto

¹School of Life Sciences and Technology, Institut Teknologi Bandung, 40132 Bandung, Indonesia

²Departement of Education Biology, Faculty of Mathematics and Natural Science Education, Universitas Pendidikan Indonesia, 40154 Bandung, Indonesia

³Department of Biology, Faculty of Mathematics and Natural Sc<mark>ience, Meda</mark>n State University, 20221 Medan, Indonesia

Background and Objective: Banana (Musa acuminata spp.) is a fruit as a source of staple food of Asia. Musa acuminata cv Barangan is a type of banana that live in low-lying areas and most widely consumed by an Indonesian people. Bananas are thought to have resistance to salinity stress by knowing the defense mechanisms against stress is expected banana can be used as an alternative crop for marginal land. Banana (Musa spp.) is mesophytic plant that intolerant to high renity. The presence of proline and Heat Shock Protein (HSP) compounds are an indicator that the plant is under stress conditions. The purpose of this study was to evaluate the banana plant defense mechanisms against the state of high salinity. Methodology: In this study will be observed accumulation of proline produced by the activity of banana plogets after being treated in the form of salinity stress condition. In this study was observed as well, Heat Shock Protein 81-2 (HSP 81-2) and delta-1-pyrroline-5-carboxylate synthase (P5CS1) gene expression profiles of plantlets were treated by salinity stress condition. To achieve the study objectives, Musa acuminata Barangan cultivar culturing in vitro carried out. Banana shoots were cultured in MS medium with BAP with additional 25, 50, 75 and 100 mM NaCl. Proline analyzed with ninhydrin methods. The RNA was isolated from cont (38 K) and treated plantlets. The cDNA made from isolated RNA to be used for qRT-PCR analysis. Transcript levels determination was validated and confirmed using quantitative real-time PCR (qRT-PCR). Results: The results of this study are as follows, proline accumulated by plantlets treated with NaCl, HSP 81-2 and P5CS1 genes expressed by all plantlets with different levels. The HSP 81-2 highest expressed by shoots and roots of plants with 75 mM NaCl treatment. Likewise, the highest proline accumulation occurred in this treatment. On the whole of the roots and shoots treated by NaCl, HSP 81-2 gene expression is higher than the P5CS1 gene expression. Results from this study may answer the purpose of the study itself. Conclusion: Musa acuminata cv Barangan plant has defense mechanisms against the state of high salinity. The expected contribution of this study is that Musa acuminata cv Barangan can be used as plant resistant to soil with high salt content conditions to resolve the problem of exploitation of critical marginal land.

Key words: Barangan, proline, qRT-PCR, heat shock protein, defense mechanism

eceived: June 14, 2016

Accepted: July 15, 2016

Published: August 15, 2016

Citation: Kusdianti, D.S. Diningrat, Iriawati and S.N. Widiyanto, 2016. P5CS and HSP 81-2 gene expression profile of banana (*Musa acuminata*) in vitro culture under salt stress condition. J. Plant Sci., 11: 91-95.

Corresponding Author: S.N. Widiyanto, School of Life Sciences and Technology, Institut Teknologi Bandung, 40132 Bandung, Indonesia

Copyright: © 2016 Kusdianti et al. This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

Environmental stresses, such as drought, salinity and extreme temperature are 3 abiotic stress most often found on agricultural land, so that all three types of stress is considered to be the cause of crops/agricultural commodities declining productivity (Xiong and Ishitani, 2006). Plants affected by salinity, drought and extended temperatures can suffer osmotic stress which leads to turgor pressure loss, cell membrane damage, disruption of protein synthesis and enzyme activity (Hasegawa et al., 2000). Among 3 abiotic stresses, salinity is the most important environmental stresses that cause major problems in agricultural production in dry or semi dry tropical areas, in areas exposed to sea water intrusion or in areas subjected to irrigation (Shannon, 1992). Excess salt in the soil will cause ion imbalance 31 mptoms, mineral deficiencies, osmotic stress, ion toxicity and oxidative stress in plants. As a result, it will also affect the regulation of gene expression, protein synthesis, as well as protein, fats and pigments metabolism in plants (Rai et al., 2011)

Plants resistance mechanisms against salinity also indicated by the formation of several compounds (Proline, polyols, trehalose, glycine betaine, etc.) to stabilize proteins and cellular structures and/or to maintain cells turgidity through osmotic pressure regulation and redox metabolism (Rai et al., 2011). Proline triggered by stress condition will act as osmoregulator, protein structurer stabilizator and cells's protector. Proline is coded by delta-1-pyrroline-5-carboxylate synthase (P5CS) gene. One of the target proteins in stress signaling pathway is Heat Shock Protein (HSP), which is synthesized not only because of the high temperates but by various stresses (salt, oxidative). Protein can be found in the cytoplasm and organelles (Nucleus, mitochondria, chloroplasts and endoplasmic reticulum). The HSP role is to protect plants from stress and important in homeostasis (Wang et al., 2004). The HSP90 plays a role in the folding and activation of proteins involved in signal transduction and ulate the cell cycle (Krishna and Gloor, 2001). The HSP 90s mediate plant abiotic stress signaling pathways (Liu et al., 2006a) and mainly acts as salinity regulator (Liu et al., 2006b). Protein with molecular weight ranging from 82-90 kD are included into the HSP 90 family. Based on transcriptome analysis of bananas cultured in 100 mM salt stress, HSP 81-2 gene was considered as top 10 genes found in this condition (Kusdianti et al., 2014).

Banana (*Musa* spp.) is mesophytic plant that intolerant to high salinity, in which a study proved that banana production will decreased up to 50% in soil with high salt levels (Shapira *et al.*, 2009). Research to obtain banana which

is tolerant to stress, biotic or abiotic stress, have been conducted previously. Some study use meristematize culture to assess banana tolerance to salinity (Ikram-Ul-Haq et al., 2012; Bidabadi et al., 2012). Study about salinity stress (50, 100 and 150 mM Na CI) to banana cv Barangan culture has been done previously. Tolerance to salinity stress in 100 mM concentration was detected in a form of browning. Multiplication was still occured but growth was slightly inhibited in terms of height compared to shoots in 150 mM concentration (Ilmawati, 2013). From transcriptome data of banana (Musa acuminata) cultured in 100 mM salt stress (Widiyanto et al., 2013), HSP 81-2 and P5CS1 gene primer were designed (Kusdianti et al., 2014) and were subsequently validated in banana shoots cul (Musa acuminata) to see the genes earession pattern. The purpose of this study was to observe HSP 81-2 and P5CS1 gene expression profile in banana shoots cultured in NaCl stressed-medium.

MATERIALS AND METHODS

Plant material and experimental traitment: Shoots of banana (*Musa acuminata*) cv Barangan were cultured *in vitro* in MS medium (Murashige and Skoog, 1962) added with 22.2 µM BAP (Fig. 1). Treatments were additional of 25, 50, 75 or 100 mM NaCl. As a control, several shoots were planted in the medium without the addition of NaCl (K). Culture periode was 3-4 weeks.

Proline analysis: Proline content in shoots and roots (Fig. 1) samples were analyzed with ninhydrin methods according to Bates *et al.* (1973). Extracts were measured its absorbance using a wavelong 520 nm spectrophotometer

RNA preparation: The RNA was isolated from control (K) and treatment shoot and root (Fig. 1) which has been grinded

Fig. 1: Shoots of banana (*Musa acuminata* cv Barangan) were cultured *in vitro*, a: Shoot and b: Root

	28	
Table 1: Gene	primer	sequences

Table 1: Gene primer sequences			
Gene name	Primer sequence 5'-3'		
18S rRNA (Brunner <i>et al.</i> , 2004)	F:AATTGTTGGTCTTCAACGAGGAA/		
	R:AAAGGGCAGGGACGTAGTCAA		
Delta-1-pyrroline-5-carboxylate synthase (P5CS1)	F:TGACTGCATTATTGCCAAGG/		
	R:AATCCTTCGACACCAACAGG		
Heat Shock Protein 81-2 (HSP 81-2)	F:GCGTTCCTCCAGATATTCCA/		
	R:CCACCAAGCACAATGATGAC		

(1.5 g) using Pine Tree Method (Chang et al. 26 93). Pellet was re-suspended in RNAase free water (DPEC), depending on the size of the pellet. The RNA quality and quantity was checked and determined with a spectrophotometer.

Validation and confirmation: Quantitative real-time PCR (qRT-PCR) 24 s used to determine transcript levels (Diningrat et al., 2015). Total RNA was extracted from control and treatment as described above. The cDNA synthesis first-strand was performed using thermo scientific reverst first aid stand cDNA synthesis kit (Deepa et al., 2014). Transcript levels were analyzed by quantitative real-time PCR using SYBR Green qPCR Master Mix according to the manufacturer's manual (Longo et al., 1990). The selected gene was delta-1-pyrroline-5-carboxylate synthase (P5CS1) and Heat Shock Proteins 81-2 (HSP 81-2) (Widiyanto et al., 2013) in which these were used to observe expression profile and 18S rRNA was used as a reference (Table 1). The PCR reaction involved these following steps: 95°C for 30 sec, followed by 40 cycles at 95°C for 5 sec and 60°C for 20 sec. Three biological replicates were included in the gRT-PCR assay.

RESULTS AND DISCUSSION

After cultures were 3-4 weeks old, shoots and roots proline analysis and gene expression analysis were carried out. Proline argus sis results (Fig. 2) shows the same pattern between progression content in the shoots and roots. When treated with 25 and 50 mM NaCl, proline content in shoots and roots was lower than in the control. In the treatment of 75 and 100 mM NaCl, proline content was increased. The highest increment in shoots occurred in 100 mM (210 mg L⁻¹), while in the root, 75 and 100 mM showed similar results (125 mg L⁻¹) which was higher than the control and three other treatments.

Proline content 25 alysis in shoots and roots of control culture showed that proline content in shoots was higher than in the roots, in which similar results also occured in 25 mM. After receiving higher NaCl treatment, 50 and 75 mM NaCl, proline content in the shoots were lower than in the root. In 75 mM NaCl, proline content in roots is much higher than in

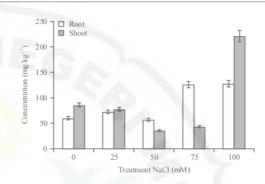


Fig. 2: Proline content in control (K) and NaCl treatment

shoot. Proline content increased in 75 mM because this concentration experiencing stress compared to two prior NaCl concentrations. Similarly, in 100 mM treatment, proline content was much higher as the stress was even more severe. In 75 mM proline content was higher in roots because contact with medium was firstly happen in roots, whereas in 100 mM contact was occurred otherwise. Proline contents in roots for 75 and 100 mM were in the same amount but 100 mM treatmen has high proline content in its shoots (210 mg kg⁻¹). This shows that plantlets which undergo NaCl stress of 100 mM produced high number of proline in its roots or shoots as a form of defense against NaCl stress. In 100 mM treatment, proline content was much higher than the other four treatments and the proline was more accumulated in shoots (210 mg kg⁻¹).

The P5CS1 and HSP 81-2 gene expression profiles in the control and treatment culture showed a different pattern, as well as profiles between shoots (Fig. 3) and roots (Fig. 4). Figure 3 shows that P5CS1 was down-regulated in 25 and 50 mM in which it were down regulated more than 0.5 times that of control. In 75 mM this gene was slightly down-regulated (0.03 times). The P5CS1 gene was up-regulated 0.37 times in 100 mM. Proline is produced only in 100 mM NaCl, These datas suggested that higher NaCl concentration in the medium resulted in increasing proline production. Figure 3 also shows that in shoots, HSP 81-2 gene was up-regulated more than 1.5 times that of controls in all 4 treatments. The HSP 81-2 gene expression was at its highest

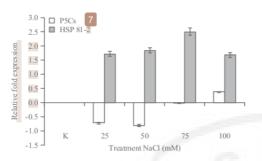


Fig. 3: P5CS1 and HSP 81-2 gene expression profile in shoots, control (K) and NaCl treatment

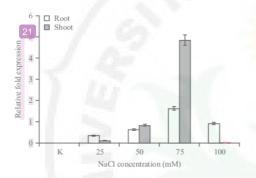


Fig. 4: P5CS1 and HSP 81-2 gene expression profile in roots, control (K) and NaCl treatments

in the 75 mM (2.5 times) and declining in 100 mM (1.68 times). These data indicates that HSP 81-2 gene was much more expressed than P5CS genes, with 75 mM as it's highest. Figure 4 illustrates that with NaCl concentrations increment in the medium, either HSP 81-2 or P5CS1 genes showed the same pattern. The HSP 81-2 and P5CS1 genes in the roots were up-regulated and its expression was increased from 25, 50 and 75 mM until it was decreased in 100 mM NaCl. In 75 mM, HSP 81-2 (4.85 times) and P5CS1 (1.6 times) gene expression were its highest compared to control and other treatments. In 25 mM, proline is higher than protein 81-2, although higher NaCl concentration will resulted in more heat shock protein 81-2 production then proline's and it will sharply decline in 100 mM. Coping mechanism for NaCl stress on the roots involves either heat shock protein 81-2 or proline, although a heat shock proteins 81-2 in 100 mM was very little produced.

Plants coping with stress by producing higher proline as its defense response. Proline content was increased with increasing NaCl concentration in growing tissue. This is an indicator of salt stress (lkram-Ul-Haq *et al.*, 2011). Proline accumulation is the first

response to salt stress that contributes to the regulation of osmotic pressure (Ranganayakulu et al., 2013). Salinity stress resulted HSP 81-2 and P5CS1 gene expression in both roots and shoots. This occurs in Helianthus tubersus L. which the genes induced P5CS2 1.9-2.1 times as 29 sponse to NaCl stress (Huang et al., 2013). Pospisilova et al. (2011) study showed an increase in proline content in transgenic tobacco plants which subjected to drought stress. Rice subjected to salt stress expressing HSP 90 (Hu et al., 2009), HSP 90 (OsHSP 93.04-OsHSP 85.88) and HSP 70 (OsHSP 71.10, OsHSP 71.18, OsHSP 72.57, OsHSP 72.90 72897.5) (Ye et al., 2012). In Sueda salsa (Chenopodiaceae), salinity will induce HSP 70 formation (Li et al., 2011). Banana plantlet expressed more heat shock protein 81-2 rather than proline to cope with NaCl stress. The number of these proteins can replace the function of proline, which acts as "Chemical chaperones" (Xu et al., 2013).

CONCLUSION

In conclusions, based on the results of the study above we can be summarized as follows, (1) Proline accumulated by plantlets treated with NaCl and HSP 81-2 and P5CS1 genes expressed by all plantlets with different levels, (2) HSP 81-2 highest expressed by shoots and roots of plants with 75 mM NaCl treatment. Likewise, the highest proline accumulation occurred in this treatment, (3) On the whole of the roots and shoots treated by NaCl, HSP 81-2 gene expression is higher than the P5CS1 gene expression, (4) *Musa acuminata* cv Barangan plant has defense mechanisms against the state of high salinity and (5) The expected contribution of this study is that *Musa acuminata* cv Barangan can be used as plant resistant to soil with high salt content conditions to resolve the problem of exploitation of critical marginal land.

REFERENCES

Bates, L.S., R.P. Waldren and I.D. Teare, 1973. Rapid determination of free proline for water-stress studies. Plant Soil, 39: 205-207.
Bidabadi, S.S., S. Meon, Z. Wahab, S. Subramaniam and M. Mahmood, 2012. Induced mutations for enhancing variability of banana (*Musa* spp.) shoot tip cultures using ethyl methanesulphonate (EMS). Aust. J. Crop Sci., 6:391-401.

Brunner, A.M., I.A. Yakovlev and S.H. Strauss, 2004. Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol., Vol. 4. 10.1186/1471-2229-4-14.

Chang, S., J. Pryear and J. Cairney, 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep., 11: 113-116.

- Deepa, K., T.E. Sheeja, R. Santhi, B. Sasikumar, A. Cyriac, P.V. Deepesh and D. Prasath, 2014. A simple and efficient protocol for isolation of high quality functional RNA from different tissues of turmeric (*Curcuma longa* L.). Physiol. Mol. Biol. Plants, 20: 263-271.
- Diningrat, D.S., S.M. Widiyanto, A. Pancoro, Iriawati and D. Shim et al., 2015. Identification of Terminal Flowering1 (TFL1) genes associated with the teak (*Tectona grandis*) floral development regulation using RNA-seq. Res. J. Bot., 10: 1-12
- Hasegawa, P.M., R.A. Bressan, J.K. Zhu and H.J. Bohnert, 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol., 51: 463-499.
- Hu, W., G. Hu and B. Han, 2009. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci., 176: 583-590.
- Huang, Z., L. Zhao, D. Chen, M. Liang, Z. Liu, H. Shao and X. Long, 2013. Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PloS ONE, Vol. 8. 10.1371/journal.pone. 006 2085.
- Ikram-Ul-Haq, F. Soomro, N. Parveen, M.U. Dahot and A.A. Mirbahar, 2011. Certain growth related attributes of micropropagated banana under different salinity levels. Pak. J. Bot., 43: 1655-1658.
- Ikram-UI-Haq, N. Parveen, M.T. Rajput and M.U. Dahot, 2012. Comparative characteristics of micropropagated plantlets of banana from BBTV-infected explants to its normal and saline stressed cultures. Pak. J. Bot., 44: 1127-1130.
- Ilmawati, G.P.N., 2013. The effect of salinity stress on growth of axillary shoot buds in vitro culture of Musa acuminata cv Barangan and cv Mas. Bachelor Thesis, Bandung Institute of Technology, Bandung, Indonesia.
- Krishna, P. and G. Gloor, 2001. The Hsp90 family of proteins in *Arabidopsis thaliana*. Cell Stress Chaperones, 6: 238-246.
- Kusdianti, Iriawati, D.S. Diningrat, G.P.N. Ilmawati and B. Panchangam et al., 2014. Transcriptome profiling of in vitro culture of banana (Musa acuminata) tolerant to salt stress. Proceeding International Symposiumon Sustainability Science, September 8-9, 2014, Indonesia.
- Li, W., C. Zhang, Q. Lu, X. Wen and C. Lu, 2011. The combined effect of salt stress and heat shock on proteome profiling in *Suaeda salsa*. J. Plant Physiol., 168: 1743-1752.
- Liu, D., X. Zhang, Y. Cheng, T. Takano and S. Liu, 2006a. rHsp90 gene expression in response to several environmental stresses in rice (*Oryza sativa* L.). Plant Physiol. Biochem., 44: 380-386.
- Liu, D.L., X.X. Zhang, Y.X. Cheng, T. Tetsuo and S.K. Liu, 2006b. Cloning and characterization of the rHsp90 gene in rice (*Oryza sativa* L.) under environmental stress. Mol. Plant Breed., 4: 317-322.

- Longo, M.C., M.S. Berninger and J.L. Hartley, 1990. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene, 93: 125-128.
- Murashige, T. and F. Skoog, 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497.
- Pospisilova, J., D. Haisel and R. Vankova, 2011. Responses of transgenic tobacco plants with increased proline content to drought and/or heat stress. Am. J. Plant Sci., 2: 318-324.
- Rai, M.K., R.K. Kalia, R. Singh, M.P. Gangola and A.K. Dhawan, 2011. Developing stress tolerant plants through *in vitro* selection: An overview of the recent progress. Environ. Exp. Bot., 71:89-98.
- Ranganayakulu, G.S., G. Veeranagamallaiah and C. Sudhakar, 2013.

 Effect of salt stress on osmolyte accumulation in two groundnut cultivars (*Arachis hypogaea* L.) with contrasting salt tolerance. Afr. J. Plant Sci., 7: 586-592.
- Shannon, M.C., 1992. The effects of salinity on cellular and biochemical processes associated with salt tolerance in tropical plants. Proceedings of a Workshop on Plant Stress in Tropical Environments, September 20-25, 1992, Kailua-Kona, Hawaii, pp: 56-63.
- Shapira, O., S. Khadka, Y. Israeli, U. Shani and A. Schwartz, 2009. Functional anatomy controls ion distribution in banana leaves: Significance of Na+seclusion at the leaf margins. Plant Cell Environ., 32: 476-485.
- Wang, W.X., B. Vinocur, O. Shoseyov and A. Altman, 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci., 9: 244-252.
- Widiyanto, S.N., G.P.N. Ilmawati, D.S. Diningrat, B. Panchangam, M.G.Diaz, N. Zembower and J.E. Carlson, 2013. Transcriptome of banana (*Musa acuminata*) of in vitro culture and salt stressed shoot-tips. Proceeding of the Annual Meeting of the American Society of Plant Biologists (ASPB) on the Post-Transcriptional Gene Regulation in Plants, July 25-26, 2013. Rhode Island, USA.
- Xiong, L. and M. Ishitani, 2006. Stress Signal Transduction: Components, Pathways and Network Integration. In: Abiotic Stress Tolerance in Plants, Rai, A.K. and T. Takabe (Eds.). Springer, Netherlands, ISBN: 978-1-4020-4388-8, pp: 3-29.
- Xu, J., C. Xue, D. Xue, J. Zhao, J. Gai, N. Guo and H. Xing, 2013. Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90) gene family cloning from soybean, decrease damage of abiotic stresses in *Arabidopsis thaliana*. PLoS ONE, Vol. 8. 10.1371/journal.pone.0069810
- Ye, S.F., S.W. Yu, L.B. Shu, J.H. Wu, A.Z. Wu and L.J. Luo, 2012. Expression profile analysis of 9 heat shock protein genes throughout the life cycle and under abiotic stress in rice. China Sci. Bull., 57: 336-343.

P5CS and HSP 81-2 Gene Expression Profile of Banana (Musa acuminata) in vitro Culture Under Salt Stress Condition

ORIGIN	ALITY REPORT	
	6% 10% 10% 2% ARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PA	PERS
PRIMAF	RY SOURCES	
1	Submitted to Mansoura University Student Paper	2%
2	Dikayani ., Sri Nanan B. Widiyan, Erly Marwani, Rina Ratnasih. "Composition of Fatty Acids due to Salinity in the Root of in vitro Culture of Musa acuminata L. Planlets of Barangan Cultivars", Asian Journal of Biochemistry, 2015 Publication	1%
3	sbt.sith.itb.ac.id Internet Source	1%
4	"Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches", Springer Science and Business Media LLC, 2019 Publication	1%
5	www.ispmb2003.com Internet Source	1%
6	worldwidescience.org Internet Source	1%

7	www.cosmetic-medicine.jp Internet Source	1%
8	Richard Odongo Magwanga, Pu Lu, Joy Nyangasi Kirungu, Qi Dong et al. " Cotton Late Embryogenesis Abundant (Genes Promote Root Growth and Confer Drought Stress Tolerance in Transgenic ", G3: Genes Genomes Genetics, 2018 Publication	<1%
9	biologi.unimed.ac.id Internet Source	<1%
10	ifbg.wiwi.uni-goettingen.de Internet Source	<1%
11	www.nature.com Internet Source	<1%
12	WWW.ors.org Internet Source	<1%
13	Hui-Chen Wu, Florence Vignols, Tsung-Luo Jinn. "Chapter 4 Temperature Stress and Redox Homeostasis: The Synergistic Network of Redox and Chaperone System in Response to Stress in Plants", Springer Science and Business Media LLC, 2019 Publication	<1%
14	Magaji G. Usman, Mohd Y. Rafii, Mohammad Y. Martini, Oladosu A. Yusuff, Mohd R. Ismail,	<1%

Gous Miah. "Introgression of heat shock

protein (Hsp70 and sHsp) genes into the Malaysian elite chilli variety Kulai (Capsicum annuum L.) through the application of marker-assisted backcrossing (MAB)", Cell Stress and Chaperones, 2017

Publication

15	Purabi Mazumdar, Su-Ee Lau, Pooja Singh, Hossein Mirzaei Takhtgahi, Jennifer Ann Harikrishna. "Impact of sea-salt on morphophysiological and biochemical responses in banana (Musa acuminata cv. Berangan)", Physiology and Molecular Biology of Plants, 2019 Publication	<1%
16	www.eneuro.org Internet Source	<1%
17	www.jpmb-gabit.ir Internet Source	<1%
18	www.science.gov Internet Source	<1%

Akhila Sen, Dinakar Challabathula, Jos T.
Puthur. "UV-B Priming of Oryza sativa Seeds
Augments the Innate Tolerance Potential in a
Tolerant Variety more Effectively Toward NaCl
and PEG Stressors", Journal of Plant Growth
Regulation, 2020

Publication

<1%

and tomato for improving tolerance to NaCl", Annals of Applied Biology, 2/14/2008

Publication

21	www.biomedcentral.com Internet Source	<1%
22	Elodie Parre, Mohamed Ali Ghars, Anne-Sophie Leprince, Laurent Thiery et al. "Calcium Signaling via Phospholipase C Is Essential for Proline Accumulation upon Ionic But Not Nonionic Hyperosmotic Stresses in Arabidopsis", Plant Physiology, 2007 Publication	<1%
23	Mamta Hirve, Meeta Jain, Anshu Rastogi, Sunita Kataria. "Heavy metals, water deficit, and their interaction in plants: an overview", Elsevier BV, 2020 Publication	<1%
24	XY. Hao, WL. Bi, ZH. Cui, C. Pan, Y. Xu, QC. Wang. "Development, histological observations and localisation in grapevine micrografts", Annals of Applied Biology, 2017 Publication	<1%
25	Xingning Xue, Aihua Liu, Xuejun Hua. "Proline accumulation and transcriptional regulation of proline biothesynthesis and degradation in Brassica napus", BMB Reports, 2009 Publication	<1%
26	bmcplantbiol.biomedcentral.com Internet Source	<1%

27	ejournal.umm.ac.id Internet Source	<1%
28	jneuroinflammation.biomedcentral.com Internet Source	<1%
29	moam.info Internet Source	<1%
30	Oa.upm.es Internet Source	<1%
31	"Improving Crop Resistance to Abiotic Stress", Wiley, 2012 Publication	<1%
32	Submitted to Universitas Pendidikan Indonesia Student Paper	<1%
	NIMED	

Exclude quotes

Exclude bibliography

Off

Off

Off

Exclude matches