DAFTAR GAMBAR

		Halaman
Gambar 2.1.	Sistematik sel elektrokimia pada potensiometer dan	
	bagian-bagian dari Ion Selektif Elektroda (ISE)	10
Gambar 2.2.	Mekanisme reaksi pada antarmuka membran dengan	
	larutan kesetimbangan elektrokimia akan menghasilkan	
	beda potensial pada antarmuka membran dengan larutan	12
Gambar 2.3.	Mekanisme lintasan kerja ionofor dari proses pengikatan	
	ion, melintasi bagian dalam hidrofobik dari membran	
	hingga melewati serta menghindari kontak dengan	
	bagian dalam dalam hidrofobik membran	14
Gambar 2.4.	Struktur eter mahkota yang umum secara berurutan yaitu	
	(1) 1-mahkota-4 ; (2) 15-mahkota-5 ; (3) 18-mahkota-6 ;	
	(4) dibenzo-18-mahkota-6 dan (5) diaza-18-mahkota-6	16
Gambar 2.5.	Eter mahkota mengkhelat logam sesuai dari ukuran	
	lubang cincin dan ukuran kationnya	16
Gambar 2.6.	Reaksi sintesis pengubahan DC menjadi DTODC	17
Gambar 2.7.	Reaksi sintesis pengubahan DC menjadi DQDC	18
Gambar 2.8.	Bagan pengukuran dengan potensiometri menggunakan	
	elektroda pembanding dan elektroda indikator dengan	
	larutan uji.	22
Gambar 2.9.	Mekanisme kerja Spin Coating	30
Gambar 2.10.	Skema sistem potensiometri penentuan merkuri dengan	
	ISE-Hg yang terdiri atas sel elektrokimia (ISE-Hg vs	
	Ag/AgCl), voltmeter dan mikrokomputer	32
Gambar 3.1.	Pembuatan larutan Hg(NO ₃) ₂ 0,01 M	36
Gambar 3.2.	Pembuatan larutan KCl 0.01 M	37
Gambar 3.3.	Pembuatan larutan KNO ₃ 0.01 M	37
Gambar 3.4.	Pembuatan larutan Hg ²⁺ 10 mM	38

Gambar 3.5.	Diagram alir pembuatan elektroda ISE-Hg	39
Gambar 3.6.	Diagram alir uji respon elektroda ISE-Hg	40
Gambar 4.1.	Desain Elektroda Kerja ISE-Hg Membran DQDC (a)	
	membran DQDC (b) Tampak bentuk badan elektroda	
	dari bahan PVC (c) ISE-Hg berlapis membran DQDC.	42
Gambar 4.2.	Desain alat potensiometri dalam penentuan merkuri	
	dengan elektroda kerja ISE Hg membran DQDC dan	
	elektroda refference Ag/AgCl. (Purba, dkk., 2013)	42
Gambar 4.3.	Hasil Uji Sensitivitas E vs time, bentuk signal	
	potensiometri dengan ISE-Hg berlapis membran DQDC	
	dalam penentuan merkuri dengan penambahan ion	
	merkuri bivalen (Hg ²⁺) kedalam KNO ₃ yang berisi HNO ₃	
	(pH 4): 0,0 mM; 10 µM; 30 µM; 50µM; 70 µM; 0,1	
	mM; 0,3 mM; 0,5 mM; 0,7 mM; 1 mM.	47
Gambar 4.4.	Kurva kalibrasi larutan standar merkuri Hg ²⁺	
	menggunakan membran ISE berlapis membran DQDC	
	(kondisi perlakuan sama dengan Gambar 4.3)	47
Gambar 4.5.	Stabilitas respon pengukuran E (mV) elektroda ISE-Hg	
	membran DQDC dengan pengukuran berulang 0,5 mM	
	Hg ²⁺ selama 43 hari.	51

ix