## DAFTAR GAMBAR

Halaman

|     | Gambar 2.1  | Sintesis <i>nanoparticles</i> top-down dan bottom up                         | 9  |
|-----|-------------|------------------------------------------------------------------------------|----|
|     | Gambar 2.2  | Pasir Besi                                                                   | 10 |
|     | Gambar 2.3  | Struktur Kristal Fe <sub>3</sub> O <sub>4</sub>                              | 12 |
|     | Gambar 2.4  | Struktur Kristal Magntetit (Fe <sub>3</sub> O <sub>4</sub> )                 | 13 |
|     | Gambar 2.5  | Struktur Sel Kubik                                                           | 14 |
|     | Gambar 2.6  | Arah Domain dalam Bahan Paramagnetik                                         |    |
|     |             | Sebelum a)dan sesudah (b) diberi medan                                       |    |
|     |             | Magnet Luar.                                                                 | 21 |
|     | Gambar 2.7  | Arah Domain Dalam Bahan Feromagnetik                                         | 22 |
|     | Gambar 2.8  | Arah Domain dalam Bhana Antiferromagnetik                                    | 22 |
|     | Gambar 2.9  | Arah Domain Dalam Bahan Ferimagnetik                                         | 23 |
|     | Gambar 2.10 | Hasil Analisa PSA Fe <sub>3</sub> O <sub>4</sub>                             | 25 |
|     | Gambar 2.11 | Gambar Fe <sub>3</sub> O <sub>4</sub> denga Variasi PEG                      | 27 |
|     | Gambar 2.12 | Ilustrasi Vibrasi Regangan Simetri dan Asimetri                              | 28 |
|     | Gambar 2.13 | Ilustrasi 4 jenis Vibrasi Bengkokan yang terdiri                             | 29 |
|     |             | Dari Vibrasi Goyangan, Guntingan, Kibaran                                    |    |
|     |             | Pelintiran                                                                   |    |
|     | Gambar 2.14 | Kurva Histerisis Fe <sub>3</sub> O <sub>4</sub>                              | 30 |
|     | Gambar 2.15 | Hamburan Sinar X Pada Kristal                                                | 32 |
|     | Gambar 2.16 | Gambar Hasil XRD Fe <sub>3</sub> O <sub>4</sub>                              | 33 |
|     | Gambar 2.17 | Grafik XRD Fe <sub>3</sub> O <sub>4</sub> dengan PEG 4000                    | 33 |
|     | Gambar 2.18 | Tipikal Kurva BET                                                            | 35 |
|     | Gambar 3.1  | Proses Pemisahan Pasir Besi dengan Krikil                                    | 38 |
|     | Gambar 3.2  | Proses Penggerusan dengan Mortar                                             | 39 |
|     | Gambar 3.3  | Proses Milling dengan Planetary Ball Milling                                 | 39 |
|     | Gambar 3.4  | (a) Hasil Pasir milling, (b) Penggerusan sampel milling                      | 40 |
|     | Gambar 3.5  | (a) Sampel dimasukkan ke Oven, (b) Proses Pengayakan                         | 40 |
|     | Gambar 3.6  | Alat Karakterisasi XRD                                                       | 41 |
|     | Gambar 3.7  | Proses Sintesis dengan HCl                                                   | 41 |
|     | Gambar 3.8  | Proses Penyaringan dengan kertas saring                                      | 42 |
| 1   | Gambar 3.9  | Proses sintesis Fe <sub>3</sub> O <sub>4</sub> dengan PEG 6000               | 42 |
| 1 9 | Gambar 3.10 | Proses Sintesis dengan NH <sub>3</sub>                                       | 43 |
|     | Gambar 3.11 | Proses Pencucian                                                             | 44 |
| 11  | Gambar 3.12 | Proses pengeringan di Oven                                                   | 44 |
|     | Gambar 3.13 | Proses pengayakan                                                            | 45 |
|     | Gambar 3.14 | Alat-alat Karakterisasi                                                      | 46 |
|     | Gambar 4.1. | Hasil Karakterisasi PSA Mikro Pasir Besi Sungai                              | 50 |
|     | Gambar 4.2. | Hasil Karakterisasi XRD Pasir Besi                                           | 51 |
|     | Gambar 4.3. | Powder Nanopartikel Fe <sub>3</sub> O <sub>4</sub> tanpa penambahan PEG      | 52 |
|     | Gambar 4.4. | Powder Nanopartikel Fe <sub>3</sub> O <sub>4</sub> coating PEG 6000          | 52 |
|     | Gambar 4.5. | Hasil Karakterisasi SEM                                                      | 54 |
|     | Gambar 4.6. | Hasil Karakterisasi Optical Microskop Fe <sub>3</sub> O <sub>4</sub> coating | 55 |
|     |             | 0.33 mmol PEG 6000                                                           |    |

|       | Gambar 4.7.  | Grafik Hasil Olahan <i>ImageJ</i> Fe <sub>3</sub> O <sub>4</sub> 0.33 PEG 6000                                      | 56 |
|-------|--------------|---------------------------------------------------------------------------------------------------------------------|----|
|       | Gambar 4.8.  | Hasil Karakterisasi Optical Microskop Fe <sub>3</sub> O <sub>4</sub> coating                                        | 57 |
|       |              | 0.67 mmol PEG 6000                                                                                                  |    |
|       | Gambar 4.9.  | Grafik Hasil Olahan ImageJ Fe <sub>3</sub> O <sub>4</sub> 0.67 mmol PEG 6000                                        | 57 |
|       | Gambar 4.10. | Hasil Hasil Karakterisasi Optical Microskop Fe <sub>3</sub> O <sub>4</sub>                                          |    |
|       |              | coating 1 mmol PEG 6000                                                                                             | 58 |
|       | Gambar 4.11. | Grafik Hasil Olahan ImageJ Fe <sub>3</sub> O <sub>4</sub> 1 mmol PEG 6000                                           | 59 |
|       | Gambar 4.12. | Grafik True density Fe <sub>3</sub> O <sub>4</sub> dengan Variasi                                                   | 61 |
|       |              | Komposisi PEG 6000(mmol)                                                                                            |    |
|       | Gambar 4.13. | Hasil Spektrum FTIR NanoparticlesFe <sub>3</sub> O <sub>4</sub>                                                     | 62 |
|       | Gambar 4.14. | Hasil Spektrum FTIR NanoparticlesFe <sub>3</sub> O <sub>4</sub>                                                     |    |
|       |              | Coating 0.33mmol PEG 6000                                                                                           | 63 |
|       | Gambar 4.15. | Hasil Spektrum FTIR NanoparticlesFe <sub>3</sub> O <sub>4</sub>                                                     |    |
|       |              | Coating 0.67mmol PEG 6000                                                                                           | 63 |
|       | Gambar 4.16. | Hasil Spektrum FTIR NanoparticlesFe <sub>3</sub> O <sub>4</sub>                                                     |    |
|       |              | Coating 1 mmol PEG 6000                                                                                             | 64 |
|       | Gambar 4.17. | Hasil Spektrum FTIR PEG 6000                                                                                        | 64 |
|       | Gambar 4.18. | Hasil Gabungan FTIR                                                                                                 | 65 |
|       | Gambar 4.19. | Kurva Histerisis Nanoparticles Fe <sub>3</sub> O <sub>4</sub>                                                       | 67 |
|       | Gambar 4.20. | Kurva Histerisis Nanoparticles Fe <sub>3</sub> O <sub>4</sub> dicoating                                             |    |
|       |              | dengan 0.33 mmol PEG 6000                                                                                           | 68 |
|       | Gambar 4.21. | Kurva Histerisis Nanoparticles Fe <sub>3</sub> O <sub>4</sub> dicoating                                             |    |
|       |              | dengan 0.67 mmol PEG 6000                                                                                           | 68 |
|       | Gambar 4.22. | Kurva Histerisis Nanoparticles Fe <sub>3</sub> O <sub>4</sub> dicoating                                             |    |
|       |              | dengan 1 mmol PEG 6000                                                                                              | 69 |
|       | Gambar 4.23. | Hasil Gabungan VSM a. Fe <sub>3</sub> O <sub>4</sub> , b. Fe <sub>3</sub> O <sub>4</sub> +                          |    |
|       |              | PEG 0.33 mmol, c. $Fe_3O_4$ + PEG 0.67 mmol,                                                                        |    |
|       |              | d. $Fe_3O_4 + PEG 1 mmol$                                                                                           | 70 |
|       | Gambar 4.24. | Gambar Grafik Gabungan Kurva Histerisis                                                                             |    |
|       |              | Fe <sub>3</sub> O <sub>4</sub> (a), Fe <sub>3</sub> O <sub>4</sub> coating APTES(b), Fe <sub>3</sub> O <sub>4</sub> |    |
|       |              | coating PEG 2000(c), Fe <sub>3</sub> O <sub>4</sub> coating PEG 6000                                                |    |
|       |              | (d), $Fe_3O_4$ coating PEG 20000(e)                                                                                 | 70 |
|       | Gambar 4.25. | Hasil Pola Difraksi Sinar X Nanoparticles                                                                           |    |
|       | 1            | Fe <sub>3</sub> O <sub>4</sub> tanpa penambahan PEG 6000                                                            | 73 |
| 1. 14 | Gambar 4.26. | Hasil Pola Difraksi Sinar X Nanoparticles Fe <sub>3</sub> O <sub>4</sub>                                            | 13 |
|       | 1.11         | coating PEG 1 mmol                                                                                                  | 73 |
| 11    | Gambar 4.27. | Hasil Gabungan XRD tanpa PEG dan coating PEG 6000                                                                   | 74 |
| 14    | Gambar 4.28. | Hasil XRD a. $Fe_3O_4$ , b $Fe_3O_4 + 1g$ PEG,                                                                      | de |
| 1     | TINT         | c. $Fe_3O_4 + 2g$ PEG, d. $Fe_3O_4 + 3g$ PEG                                                                        | 76 |
| 100   | Gambar 4.29. | Gambar Hubungan antara $P/P_0$ dengan $1/[w((P_0/P)-1]$                                                             | 77 |

