DAFTAR GAMBAR

Halaman

Gambar 2.1.	Sintesis Partikel Nano top down dan bottom up	8
Gambar 2.2.	Pasir Besi	11
Gambar 2.3.	Struktur Kristal Fe ₃ O ₄	13
Gambar 2.4.	Struktur Spinel Magnetit (Fe ₃ O ₄)	14
Gambar 2.5.	Struktur Kimia Glukosa	15
Gambar 2.6.	Konfigurasi atom dipol untuk material diamagnetik	
	dengan dan tanpa medanmagnet	18
Gambar 2.7.	Konfigurasi dipol atom dengan dan tanpa medan	
	magnet eksternal untuk bahan paramagnetik	19
Gambar 2.8.	Skema ilustrasi penyelarasan atom dipol untuk material	
	ferromagnetik tanpa ketiadaan medan magnet eksternal	20
Gambar 2.9.	RepresentasiSkematis dari keselarasan antiparalel pada	
	memoen magnetik spin untuk antiferromagnetik mangan	
	oksida	21
Gambar 2.10.	Diagram skema yang menunjukkan konfigurasi momen	
	magnetik spin untuk ion Fe^{2+} dalam Fe_3O_4	22
Gambar 2.11.	Penggambaran Skematik Domain dalam Material	
	Ferromagnetik atau Ferrimagnetik	24
Gambar 2.12.	Perubahan bertahap dalam orientasi dipol magnetik	
	melalui dinding domain	24
Gambar 2.13.	Kurva B versus H untuk material Ferromagnetik	
	dan ferimagnetik	25
Gambar 2.14.	Kerapatan Fluks Magnet Versus Medan Magnet	
	Eksternal untuk MaterialFerromagnetik	26
Gambar 2.15.	Transisi nanoscale pada partikel nanomagnetik	
	dari derromagnetik kesuperparamagnetik	28
Gambar 2.16.	Ilustrasi konsep superparamagnetik	29
Gambar 2.17.	Grafik Pola XRD	33
Gambar 2.18.	Difraksi Sinar X	34
Gambar 2.19.	Kurva Histerisis	36
Gambar 2.20.	Prinsip Kerja FTIR	38
Gambar 2.21.	Vibrasi Streching	41
Gambar 2.22.	Vibrasi Bending	42
Gambar 2.23.	SpektrumFTIR Partikel Nano Fe ₃ O ₄ coated Glukosa	42
Gambar 2.24.	Surface Area Analyzer	45
Gambar 2.25.	Hasil PSA Fe ₃ O ₄	46
Gambar 2.26.	Komponen SEM	52
Gambar 2.27.	Hasil Analisa SEM	52
Gambar 4.1.	Hasil Karakterisasi PSA Powder Pasir besi	58
Gambar 4.2.	Pola PowderPasir Besi	59
Gambar 4.3.	Serbuk Partikel Nano Fe ₃ O ₄ dan dan tanpa glukosa	61
Gambar 4.4.	Hubungan antara komposisi glukosa dengan true density	62
Gambar 4.5.	SEM Fe ₃ O ₄	64

Gambar 4.6.	Hasil Pengolahan menggunakan software ImageJ	
	pada partikel nano Fe ₃ O ₄ coated glukosa 0.01 mol	64
Gambar 4.7.	Distribusi partikelpadapartikelnano Fe ₃ O ₄ coated	
	glukosa 0.01mol	65
Gambar 4.8.	Hasil Pengolahan menggunakan software ImageJ	
	pada partikel nano Fe ₃ O ₄ coated glukosa 0.02 mol	65
Gambar 4.9.	Distribusi partikelpadapartikelnano Fe ₃ O ₄ coated	
	glukosa 0.02mol	66
Gambar 4.10.	Distribusi partikelpadapartikelnano Fe ₃ O ₄ coated	
	glukosa 0.03mol	67
Gambar 4.11.	Distribusi partikelpadapartikelnano Fe ₃ O ₄ coated	
	glukosa 0.03mol	67
Gambar 4.12.	Spektrum FTIR	68
Gambar 4.13.	Kurva Histerisis PengujianVSM	70
Gambar 4.14.	Pola Spektrum XRD pada Sampel Partikel nanoFe ₃ O ₄	73
Gambar 4.15.	N2adsorption/desorption isoterms pada partikel nano	
	Fe ₃ O ₄ coated glukosa 0.01	74
Gambar 4.16.	Hubungan antara Relative Presure P/P ₀ dengan	
	1 / [W((Po/P) - 1)]	75

Y

THE

UNIVERSIT