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Introduction

A set of different factors such as fossil resource constraints,
negative environmental impacts, hydrocarbon utilization,
rising fossil fuel prices, political conflicts and its effects on
sustainable energy supply force the policy makers and experts
to move towards the creation of a new technology with higher
security of energy supply, environmental protective, and
higher energy system efficiency [1-3]. Accordingly, hydrogen
is one of the best options to play as a safe alternative in this
new energy delivery system. Hydrogen as the most abundant
element on Earth is produced in various ways. The provided
electricity from renewable sources such as wind, solar, and
geothermal can be used for hydrogen generation [4-6]. The
generated hydrogen is then saved and transferred to the lo-
cations to be used in a variety of applications, including small
electronics, transportation industry, and power plants. How-
ever, many people believe that the ultimate fuel for the
human society is hydrogen and that human will be experi-
enced the hydrogen era in a not too distant future. Some
prominent features of the hydrogen that distinguish it from
other fuel options are its abundance, almost unique con-
sumption, negligible emission of pollutants, reversibility of its
production cycle, and reduced greenhouse effects. Hydrogen
power system due to independence from primary energy
sources, is a permanent, sustainable, immovable, inclusive
and renewable system and it is predicted that in the near
future, its production and consumption as energy carrier will
spread throughout the world economy and stabilize the
hydrogen economy. However, one should not expect
hydrogen to compete with other energy carriers in terms of
cost of production at the beginning step, in the future
hydrogen will play a central role in-controlling urban pollu-
tion. The conversion of chemical energy in hydrogen into
electrical energy is cm‘ied out by fuel cells, Fuel cells have
great potential as one of the future energy sources in hybrid
systems due to their many advantages and rapid advance-

ment in their technology (7, ). Hydrogen, after being extracted
from hydrocarbon or water sources, is considered as a sus-
tainable fuel in energy sources l'ryfudl cells. Nomﬂayg,due to
the expansion of wind and solar power sources in different
countries and the availability of high and low-cost energy, the
possibility of hydrogen extraction from the electrolysis pro-
cess of water has become economical [9]. Therefore, the use of
fuel cells in hybrid systems as one of the sources of energy
conversion and generation along with solar and wind energy
sources is a serious option. A more popular type among fuel
cells is proton-exchange membrane fuel cell (PEMFC) [10].
PEMFC are high-efficiency power generators that can achieve
40%—50% electrical efficiency at different power scales. The
basis of energy production in PEMFCs is the exothermic re-
action between hydrogen and oxygen present in the air. The

result of this reaction is electricity, heat and distilled water.
The benefits of PEMFCs such as lighter weight, solid electro-
Iyte, short start-up time without noise, variability, and the
ability to renew the system in a closed cycle independent of
the_bat_tery have attracted research into replacing the polymer
fuel cell system with satellite batteries [11,12].

Generally, mathematical modeling of the PEMFCs is an
important category that can be used for optimal designing the
system [13,14]. This modelingis based on considering physical
and electrochemical processes to govern the fuel cell effi-
ciency [15-18]. The model includes a differential equation
system along with its determined constraints to define the
transition processes and their relations. Based on the
explained cases and due to the importance of the PEMFC
modeling, several researchers have been worked on this
subject [19].

Rahman et al. [20] presented both modeling and empirical
results for a PEMFC operating based on its open circuit voltage
to restricting current conditions, The results were verified by
limiting current tests and polarization curves based on
different operation conditions. Simulations showed that the
proposed 1-D dry model has a good agreement with experi-
mental results.

Yang et al. [21] employed an adaptive neuro-fuzzy infer-
ence system (ANFIS) for modeling a 250 W PEMFC that is
placed on an electric bicycle. To determine the system
configuration, humidity, temperature, hydrogen, oxygen
flowrate, and current were adopted as the inputs and the ef-
ficiency and the voltage were considered as the outputs of the
ANFIS, Simulation results showed that using ANFIS for

-modeling the PEMFC gives a reliable and accurate result to
predict the PEMFC performance. However, the classic

methods and the ANN gave logical results, by introducing the
metaheuristics, the researchers were attracted to use these
types of solvers to resolve the modeling problem with a simple
and time eavin;g procedure. For example, Yang et al. [21] pro-
posed 2 hybrid neural network and metaheuristic for param-
eter estimation of a proton exchange membrane fuel cell
(PEMFC). They used a new hybrid optimization algorithm,

«called hybrid world cup optimization (WCO) and fluid Search
‘Optimization (FSO) algorithm to optimize the efficiency of an

improved version of Elman neural network. The method was
also verified based on four different operational conditions.
Simulation results were compared with some well-known
metaheuristics and the results showed higher efficiency
with good agreement with the experimental data of the
PEMFC.

Yin and Razmjooy [22] proposed another optimal method
based on deer hunting optimization (DHO) algorithm to esti-
mate the PEMFC parameters. The DHO algorithm has been
adopted to improve PEMFC parameters identification. The
method was then verified based on different operational
conditions and the results were compared with different
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algorithms. Final results indicated the superiority of the
method in achieving the PEMFC model parameters.

Cao et al. [15] presented another optimized model for
parameter identification of the PEMFCs. The main objective
was to propose a developed model of seagull optimization
algorithm to optimal selection of the PEMFC stack parameters.
Two experimental-based data including BCS 500-W and
NedStack PS6 were used for algorithm verification and the
results were compared with some different optimization al-
gorithms to show the method's higher efficiency.

This study presents a new developed metaheuristic tech-

nique with desirable search ability with the ability of making

good trade-off between exploration and exploitation search
for optimal selection of the PEMFC stack model parameters,
i.e. the proposed developed algorithm improves the basic al-
gorithm in terms of diversity and balance of exploitation and
exploration. The algorithm also attempts to resolve the basic
algorithm premature convergence shortcoming. The total
contributions of the algorithm are briefly given below;

~ Designing a new improved metaheuristic for parameter
estimation of PEMFC.

— The method is based on a new model of Monarch Butterfly
Optimization Algorithm.

~ The method is verified by two empirical data, NedSstack
P56 and Nexa FC.

— The final configuration is compared with empirical data
and some well-known algorithms.

The rest of the paper is organized as follows: Dynamic
mechanism of model of proton exchange membrane fuel
cell discusses about the model of the PEMFC, in Monarch
Butterfly Optimization algorithm, the improved version of
Monarch Butterfly Optimization as one contribution of this
paper is briefly explained. Simulation results illustrates the
simulation results of the proposed method on two experi-
mental case studies and the paper is concluded in Conclusion.

Dynamic mechanism of model of proton
exchange membrane fuel cell

PEMFC modeling

PEMFCs consist of a series of electrode membranes including
electrodes, electrolytes and catalysts, and gas diffusion layexs.

A layer of catalyst, carbon, and electrode is sprayed onto the
solid electrolyte and a carbon sheet is pressed on each side to
protect the cell and act as the electrode [23]. The most basic
part of the triple phase boundary cell (TPB) is where the
electrolyte, the catalyst, and the reactants are fused together
or where the cell's primary reaction occurs. The important
point is that the membrane should not be electrically
conductive so that half the reactions are not mixed. A fuel cell
with a polymer membrane converts the chemical energy
released during the electrochemical reaction of hydrogen and
oxygen into electrical energy, in contrast to the direct com-
bustion process of hydrogen and oxygen gases that generate
thermal energy. The hydrogen gas enters the fuel cell from the
anode side. At the anode and adjacent to the catalyst it

becomes a proton and an electron. Hydrogen oxidation is
expressed as follows:

H, —2H' +2¢" &)

The proton penetrates the cathode through the electrolytic
membrane. The electrons also move to the cathode through
the outer charge circuit, which generates the electrical current
of the fuel cell output. In the meantime, a stream of oxygen
enters the fuel cell through the cathode, forming a chemical
reaction with water molecules in combination with protons
transported from the anode and electrons through the outer
orbit. This oxygen resuscitation reaction is formulated below:

Cathode: 2H" +-;-o, + 2 —H,0 @)

And the overall reaction is as follows:

Overall: H, +%oz-m,o @)

The reverse reaction is expressed in the above equations,
showing the re-fusion of the protons of hydrogen and electron
together with the oxygen molecule and the production of the
water molecule, Fig (1) shows a basic structure of a PEMFC.

To provide a basic perception about PEMFC for analyzing its
output parameters including cumrent density and output
voltage, the mathematical model has been required. The
output voltage of a PEMFC stack can be formulated as follows.

Vre =Eneest = Vaer = Veon — Vi {4)

where, V,, represents the ohmic overpotential voltage, V.,
describes the concentration overpotential, V., determines the
activation overvoltage, and Ey.x represents the Nemnst po-
tential and is obtained as following:

B =V~ ke~ Ad(5) 5+ 70 (mpu, 2 woi,) ©)
where, V" represents the reference voltage, Ty determines the
temperature of fuel cell (°C), 2, is a constant factor (Q), F stands
for the Faraday constant, ki represents the empirical constant
(V/K), and Po,and pH, determine the oxygen and hydrogen
partial pressures (Pa). Fig: (2), shows a circuit model of the
output voltage for PEMFC.

If ncells accumulated with a fuel cell system, the voltage
Vouris achieved as follows:

Vi=N XV (6)
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Fig. 2 — The circuit-model of a PEMFC.

Based on literature review, there are some research works
with determinative differences between the membrane-
electrode connection voltage levels of identical fuel cells at
the same conditions that makes V' as a parameter that should
be selected optimally [24]. 7. and A, are two other parameters
in model that should be optimally selected. Another part of
model that needs optimization forits unknown parameters is
ohmic resistance. Based on the electrical modeling from
Fig, (2), this term can be achieved by the following equation:

Rohm = Rm + Ry (7)

where, R, stands for the equivalent resistance for the trans-
ferred protons through the membrane, and R, represents the
membrane resistance that is achieved as follows [25]:

2 25
181.6 x I x [1 +0.03 x 1 +0.062 x (Eﬁ) X (ﬁ) ]
Rm = ) {8)
A x (ﬁ —-0.634 —%) xe("mi‘_

where, | describes the fuel cell thickness, and ¢ represents an
adjustable parameter that depends to the relative humidity,
the membrane age, and the anode gas stoichiometric ratio.
Here, | and ¢ are also considered as two unknown parameters
that should be optimized.

Also, the mass transport losses decrease the concentration
of the reactant on the surface of electrodes. This term can be
formulated as follows [26].

gc.,ﬁnxrum(h_:rm_ml) o)

where, B represents an experimentally value which depends
to the operation state of the cell, and 1, describes the
maximum current ratio of the electrode and is obtained by the
following Eq. (26).

=D x Ny XFXCyRr 2 (10)

where, D describes the reacting effective diffusion, N, repre-
sents the number of electrons that are adopted for the reac-
tion, C; determines the bulk concentration, and r stands for
the thickness of the diffusion layer.

From Fig (2), model contains a capacitor to simulate the
effect of double-layer charging between the membrane and
porous cathode. This voltage is obtained by the following
equation:

Ve (1-C %) * Ren + ) (1)

Since the capacitance parameter (C) has some

uncertainties due to the porous behavior of PEMFC, this term
has been assumed as an unknown parameter for
optimization.

Another term of the model based on Fig. (2) is the activation
loss that decreases the speed of the reactions on the surface of
electrode, This term is mathematically formulated as follows:

Vot =81 + £ x T+ 3 x Tpe x In(CO3) + &4 x Tre x In(1) (12)

where, §; points to pseudo-experimental values, and CO,
defines the oxygen concentration at the cathode/gas interface
(mol.cm ) and is achieved as follows:

CO,=pO2 x 5.08 x 108 x e — 498T — 1 (13)

And CH, defines the Hydrogen concentration at the anode
membrane/gas interface (mol. cm ) as follows:

Gl
CH; =py, x [‘10.9 x10" x e . ] (14)

The main parameter values for the PEMFC model are given
in Table 1 [24,27,28].

PEMFC model parameters optimization

For optimal selection of the aforementioned unknown pa-
rameters, a new optimization algorithm has been employed.
The purpose of this algorithm is to minimize the Integral of
Absolute Emor (IAE) value between the optimized model
voltage and the actual voltage that is extracted from experi-
mental data. The IAE minimization as an objective function is
given in the following equation:

min I):iV‘rc“V‘uml (19)
7]

where, m stands for the number of empirical data for training,

and Vi and Viuq.deseribe the actual and the estimated volt-

ages for the PEMFC stack, respectively. Eq. (15) will be per-

formed subject to the following constraints (Table 2):

As can be observed, due to using interval constraints
instead of algebraic equations, classic optimization methods
fail to achieve. the global minimum of this problem. This
reason made us to design a metaheuristic-based optimization
algorithm to solve the optimal parameter identification
problem of the PEMFC stack model.

In_recent yéars, the application of metaheuristic-based
methods for solving parameter identification is exponen-
tially increasing [29-33]. Metaheuristic-based methods often
have been inspired by different nature phenomena. For
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l'able 2 - The required limitations for the unknown

parameters for optimization.

Parameter Minimum value Maximum value  Unit
& 0.1 10 F

A 90 130 cm?
B 0.01 0.1 v

1 51 8g m
i 0 0.01 Q
v 0.1 2 v

¢ 1 23 =
§1 0 .l; i n
A 0 1% 104 gt~
E‘ 0 A 1 1@_ 5 . AJ;_

And, £, = 0.003 + 0.0002 In(A) +ﬁx 10-6 hﬁ{.i §

instance, Emperor Penguin Optimizer (EPO) inspired based on
the swarm living of emperor penguins, Coyote Optimization
Algorithm (COA) [42] inspired by coyotes survival behavior in
the nature, Deer Hunting Optimization Algorithm (DHOA) [43]
inspired based on how to hunt the deer.

Among different aforementioned metaheuristics, one of
the newest efficient algorithms is Monarch Butterfly Optimi-
zation (MBO) that is introduced by Wang et al., in 2019. This
algorithm simulates the unique behavior of the monarch
butterflies as the only species which migrate to the tropical
zones like birds. The main purpose of this paper is to improve
this algorithm's efficiency by applying some new mechanisms
for PEMFC parameter identification.

Monarch Butterfly Optimization algorithm
Basic Monarch Butterfly Optimization (MBO) algorithm

Monarch Butterfly Optimization (MBO) Algorithm starts with a
random and uniform population that is called monarch but-
terflies population. This population includes the solution
candidates of the problem. MBO divides the population into
two groups: Land 1 and Land 2. Therefore, the number of
monarch butterfly individwals in subpopulation Land 1 and
Land 2 are as follows:

Land 1=NP, x ceil(p x NP) (16)

Land 2 =NP - NP; x-(NP,) (17)

where, NP describes the total number of populations, ceil(x)
rounds x to the nearest integer greater than orequaltox, andp
determines the monarch butterflies’ ratio in Land 1. The new
child population in the algorithm is generated by the monarch
butterfly parents of both Lands. In the event that the parent
has better value than the generated child, to keep the popu-
lation number constant, it has been replaced with the child.
This keeps efficient patents for the next generation. This
conception can be formulated as follows:

Xii=x . (18)

where, %" describes the kth element of position (x;) of mon-
arch butterfly i at generation t+1, X} , defines the kth updated

Initializing the Monarch
Butterfly population and

parameters
v
Quasi-oppositional
it'-ﬁwmwumiug
d v Chaotic local search

. Migration Operator

-Mﬁﬂy adjusting
operalor

Fig. 3 — The flowchart diagram of the proposed IMBO.

element of x,; for the individual r;, and t represents the
number of current iterations. The individual r; is randomly
selected from Land 1. If r has less value than orequal to p, ris
achieved by the following equation:

FT=pxTt (19)
where, r describes the period of migration, and p defines a
uniform and random number, In contrast, if the p has a value

less than r, the element k for the new butterfly is achieved by
the following:

=% (20)

where, x; , describes the kth updated element of x,; for the
individual r, that is obtained randomly from the Land 2. An
interesting advantage of the algorithm is in making a logical
trade-off between Land 1 and Land 2 such that when p has
bigger value, a large number of populations is selected from
Land 1, otherwise, most of population will be selected from
Land 2. If the generated child for the monarch butterfly | has
smaller value than or equal to p, the position has been upda-
ted as follows:

Xt =x!ual.l| (21)

where, X}, describes the kth individual of xz.. that gives the
best résult in the population.

If p has a value less than p, the position has been updated as
follows:

Xt =%, (22)
rs€(1,2,...,NP;] (23)

where, x| , describes the kth randomly selected member of
X, from Land 2,

During the algorithm, if the rate of butterfly adjustment
{Rya) is less than p, the position has been updated as follows:

X=X}, +a x (dx — 05) (249
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where, dx represents the walk step of the individual i and is
achieved as follows:

dx=Levy(x) (25)
where, « points to the weighting coefficient, such that:

sm

=5 (26)

where, sm represents the maximum walk step that is passed
by a butterfly in one step.

By considering a big value for «, a long search step has been
resulted that increases the impact of dx on x{5" applied to the
exploration term. In other hand, if « has small value; short
search step will be made for x}* and will result and exploi-
tation mechanism.

@

Improved monarch butterfly optimization (IMBO) algorithm

Based on aforementioned explanations, excessive exploration
of MBO algorithm during high value of a gives an incompetent
time-consuming result after some iterations. For resolving
this problem, two different mechanisms have been employed
that are explained in the following.

Quasi-oppositional based learning

To understand the conception of Quasi-oppositional mecha-
nism, the oppositional-based learming should be first
explained. The oppositional-based leaming is a term for
improving the precision and the convergence speed by
comparing of the considered candidate with its opposite and
selecting the best one as the new candidate [34,35]. For better
illustration of the opposite number, consider NP as a real
number in a D-dimensional search space limited in the in-
terval [L, U], The opposite of the candidate NP is defined by NP

and is achieved by the following:
NP, = [., = U't " NP,' (27}
i=1,2,....D (28)

By considering the definition of opposite number, the
quasi-opposite number is defined by NP as follows [36]:

P, = rand (”%‘*m) (29)

This mechanism can be briefly explained by the following
pseudo-code:

Chaoatic local search
The present study also uses chaotic local search for more
modification. This mechanism can be used for resolving the

for i=1:N
for j=1:D

Table 3

verification.

The utilized functions for the

Formulation Range F

F1 = xx sin(4x) + 1.1y x sin(2y) 0<x,y<0 -1855
5 gin’ (/x4 y2 - 05)

Fz——O_S‘f'm-)——- de.)'(z 0.5

F3 = [x] + [yl +(x® + )% x [~ om] -0.25
sin(30((x 4 05)" + ")

F4 =101+ E{x} ~-10 cos(2mx;)), n =9 [-512,532] 0

algorithm premature convergence [37,38]. A typical form of

chaos theory is as follows:

Eﬂ =f(Cc™M}) (30)
Where, | =1,2....,n, ndescribes the dimension map and f(CM))
represents the chaotic model.

The present study uses a well-known chaotic mechanism,
called logistic map for modification. By applying logistic map
to the population,

Tria =W X Ty X {1 _‘Yn) {31}

where, » = 4, and v, represents the value of the chaotic
mechanism in iteration n in the range [0, 1] [37,38]. Accord-
ingly, the chaotic sequence, 7,5, is formulated as follows:

Tong=4% Yong (1 ¥ 70.!1,&1) (32)

where, o represents the system generators quantity, n de-
scribes the population number, and g stands for the iteration
number,

By adopting Eq. (31) as the chaotic mechanism for the
monarch butterfly individuals,

Bl =2, 4 Gang % (dX — 0.5) (33)

Fig. (3) shows the diagram flowchart of the proposed IMBO
algorithm,

To validate the proposed IMBO, it has been applied to four
test functions and the results have been compared with some
well-known algorithms. The compared algorithms include
Chaotic grasshopper optimization algorithm for global opti-
mization (CGOA) [39], Grass Fibrous Root Optimization Algo-
rithm (GRA) (40}, and basic Monarch Butterfly Optimization
(MBO) [41] to show its prominence. Table 3 indicates the de-
tails of the test functions.

Based on this study, the algorithm will be stopped when
the maximum number of evaluated functions are achieved.
Table 4 indicates the validation results of the compared al-
gorithms by considering the four defined test functions. The

OX(i,3)=1(3)+u(g)-np{i,3);
e(3)=(1(3)+u(i)) /2;

if OX{1i,]7)<c(])

QOX (1, 3)=c (1) +(0X(i,3)-c(])) *rand;

else

QOX(4,3)=0%X(i,3)+ (c(3)-0X(i,])) *rand;

‘end
end
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230 f T — T | —
Table 4 - The validation results of the compared
algorithms.
CGOA[39] GRA[40] MBO[41] IMBO
F1 Maximum ~9.85 A1.27 ~11.20 ~10.35
Minimum ~18.45 ~18.50 ~18.48 ~18.53
Median std -15.48 ~16,05 ~16.36 -16.54
475 231 3.26 264
F2 Maximum 0.534 0.542 0511 0503 - ‘ : : ==
Minimum 0.500 0.500 0.500 |m‘ 0 200 400 rm““ maon 1000 1200 1400
Medianstd  0.536 0542 05701 0563 (A)
0,025 0003 0001 0000 .
F3  Maximum -0,064 ~0.143 -0223 -02%7 14 Y A |
Minimum -0.245 ~0.249 0253 025 - r l
Medianstd ~ -0125  ©-0176 . 0230, -0.241 4 |
0143 . 0204 . 004 o001 2w aw
P4 Maximum 1736 2243 723 119 i - mn ]
Minimumi 2016 0005 0000 0000 g T L
Medianstd  7.391 9 0464 0,095 o 3 oW
418 0329 0076 P '
a0 w0 oW s oo 1200
Time (s)
validation is based on evaluating Median value, standard de- (B)
viation (std) value, minimum, and the maximum values of the
objective function. Fig. 5 — The current profile adopted by (A) NedSstack PS6
Fig. (4) shows the convergence profile of the compared al-  and (B) 2 kW Nexa for validation.
gorithms during the validation on the test functions. Form the
results, it is obvious that the proposed IMBO algorithm has the
best accuracy among different compared algorithms. The
0s02f\
=17
= & 05015
£ £
8 175+
£ g 0.501
il © 05005}
185k 0.5 -
ey 5 4 0 28 30
Number of lteration Numiber of Tteration
(F1) (F2)
g Rl
0t ——=MBO | 100 b =——=MBO
e GRA —GRA
2 005 | —CGOA| 2 gof ——CGOA
2 2 )
-0, 8 6ot
: :
g -0.15 X £ 40!
C 3]
02 \ 20
<0.25 L 0
5 10 15 20 25 30 20 40 60 RO 100
Number of lteration Number of lteration
(F3) (F4)

Fig. 4 — The convergence profile of the compared algorithms.




Table 5 - The validation results of the proposed IMBO algorithm compared with other well-known algorithms for

NedSstack PS6 PEMFC.

Parameter Method Unit
IMBO MBO [41] GRA [40) CGOA [39]

EY 1.29 1.42 1.20 1.32 v

& -1.92 0.897 116 1.03

£y 1.98 x 10-2 231 % 107 1.75 % 107° 1.75e10-3

£ 792 %105 7.62x 10-% 593 % 10°% 7.84 % 1075

s - 9.54 x 104 - 9.37x 10 — 829« 10% - 9.48x 104 -

A 211.37 237.20 209.15 210,58 om?

¢ 15.80 16.18 1453 15,93 ~

ie 0010 0.008 0.004 0.01 0

| 13.25 % 106 15.82x.10°¢ 1340 % 10¢ 12 x 10°8 m

B 0.054 0.048 0.039 0.072 v

C 557 5.80 493 517 F

150 ——————— — S—

‘_\; ' I’I 4
£ \ - i
Z L N
g (0O 1 “

= — Fxporimcaital duta
== IMB
MDY
== TAIA
GRA

Fig. 6 — The results of different algorithms for NedSstack
PS6 parameter identification based on voltage profile.

—= Eixperimental data)
= = IMBO
M)
——GRA
b

TN
’ A == iy

] Hi 0 (1] L1 100 120 144 (L0 L0 20

Fig. 7 — The results of different algorithms for NedSstack
PS6 parameter identification based on voltage-current
profile,

minimum value of the IMBO also shows its higher robustness
toward the others.

Simulation results

In this study, two standard benchmarks including 6 kW
NedSstack PS6 PEMFC and 2 kW Nexa PEMFC have been
adopted for validation the proposed algorithm. Fig. (5) shows
the current profile for training the PEMFC models in 6 kW
NedSstack PS6 PEMFC (A) and 2 kW Nexa PEMFC (B),
respectively.

The system simulation and programming are performed
by MATLAB R2017b. The required parameters for the proposed
IMBO for optimal parameters selection of the PEMFC are: N; =
50, N = 10 with 100 iterations. Based on the mentioned as-
sumptions, the results for the two analyzed case studies are
given in the following.

6 kW NedSstack PS6 PEMFC

The first case study is based on the information collected by
the available data sheet of NedStack PS6 fuel cell, 6 kW [42]. In
this case study, the number of cells are considered 65. Each
cell contains an area of 240 cm? with 178um thickness. The cell
temperatureis 343 K and the range of supply pressure is in the

Table 6 - The validation results of the proposed IMBO algorithm compared with other well-known algorithms for Nexa

PEMFC.

Parameter Method Unit
IMBO MBO [41] GRA [40] CGOA [39]

v 1.324 1.286 1319 1.320 v

£ -0.356 -0.428 -0.376 ~1.030

£ 6471 x 10-% 5.736 % 10°% 6.137 % 105 7480 x 10-%

£q - 9,153 x 107* ~ 1682 x 107 1443 x 104 —948x 107

A 119,35 116,50 116.76 210.58 em?

& 15.76 14.69 14.08 15.930 -

% 0.015 0.008 0.005 0.010 a

i 19x 10°¢ 47 % 10°¢ 43 % 1076 12 %'1076 m

B 0.077 0.064 0072 v

c 5.24 5.96 5170 F
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o T aprimental e —l algorithm has the most agreement to the experimental
ssp r Bk ind ' \ compared with other analyzed algorithms.

. :“ B _ ‘ Fig (7) shows the voltage-current profile of the experi-

g ¥ i~ | mental and estimated results for NedSstack PEMFC based on

: | the proposed algorithm and the compared algorithms. As can

b ~::--es i . v be observed from Fig. (7), the estimated model based on the

25} — e T proposed IMBO has the best agreement with the experimental
Time (3) profile which shows its prominence than the other compared

Fig. 8 — The results of different algorithms for Nexa PEMFC Rggs fo this case study,

parameter identification based on voltage profile.

The 2 kW nexa PEMFC

The next case study is to verify the algorithms by the infor-
mation collected by the available data sheet of 2 kW Nexa
PEMFC [43]. Table 6 illustrates the validation results of the
proposed IMBO algorithm compared with other well-known
algorithms including GRA [40), CGOA [39], and MBO [41] for
optimal selection of the 2 kW Nexa PEMFC parameters.

Fig. (8) and Fig (9) show the voltage and the voltage-current
profiles of different algorithms for the Nexa PEMFC parameter
identification based on voltage profile. The validation is based

£ on the load profile of the experimental data compared with
Fig. 9 — The results of different algorithms for Nexa PEMFC proposed IMBO and some well-known methods including GRA
parameter identification based on voltage-current profile. [40], CGOA [39], and basic MBO [41].

It is observed that the proposed IMBO has the maximum
agreement to the experimental data for optimal PEMFC
modeling. Fig (10) shows the value of the Integral Time Ab-
solute Error (ITAE) for the proposed IMBO compared with GRA
range [0.5, 5] bar. The output voltage of NedSstack is limited  [40), CGOA [39], and basic MBO [41]. Fig (10) shows that the
between 32 V and 60 V DC, and the range of operation isinthe  presented IMBO algorithm has the minimum value of ITAE for
range [0, 225] A. Table 5 indicates the validation results of the  both case srudies.
proposed IMBO algorithm compared with other well-known
algorithms including GRA [40], CGOA [39], and MBO [41]for
optimal selection of the NedSstack PS6 PEMFC parameters.  Conclusions
The results show the mean value for 30 independent runs.

Fig (6) shows the output voltage profile for the experi-  This study proposed a new procedure for optimal parameter
mental data, the proposed IMBO algorithm and the other  selection of proton exchange membrane fuel cell (PEMFC). The
compared algorithms. As can be observed, the proposed IMBO  procedure is based on using a new improved version of

IMBO IMBO
25 2

- CGOA ' MBO CGOA MBO

GRA GRA
(A) (B)
Fig. 10 — The radar plot of ITAE for minimum value for (A) NedSstack PEMFC and (B) Nexa PEMFC.
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Monarch Butterfly Optimization (MBO) for minimizing the
Integral Time Absolute Error (ITAE) between the experimental
data and the optimal achieved model. 1The system analysis
was based on a circuit-based model of the PEMFC and pa-
rameters contain data from 2 kW Nexa PEMFC and 6 kW
Nedsstack P86 PEMFC. The simulations applied based on
MATLAB software and the results of the proposed IMBO were
compared with some well-known algorithms including GRA,
CGOA, and basic MBO to show the prominence of the pre-
sented algorithm.
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