Your manuscript CSITE_2019_450 has been sent for review.

Case Studies in Thermal Engineering - <CiteSupport@elsevier.com>

Fri, Nov 22, 4:40 PM

This message was sent automatically.

Reference: CSITE_2019_450
Title: Microstructure and Thermal Properties of Natural Rubber Compound with Palm Oil Biodiesel Ash for Nanoparticle Filler
Journal: Case Studies in Thermal Engineering

Dear [Author],

I am currently identifying and contacting reviewers who are acknowledged experts in the field. Since peer review is a voluntary service, it can take time to find reviewers who are both qualified and available. While reviewers are being contacted, the status of your manuscript will appear in EVISEs as 'Reviewer Invited'. Once a reviewer agrees to review your manuscript, the status will change to 'Under Review'. When I have received the required number of expert reviews, the status will change to 'Ready for Decision' while I evaluate the reviews before making a decision on your manuscript.

To track the status of your manuscript, please log into EVISEs and go to 'My Submissions' via http://www.evise.com.au/setfacs/pages/navigation/

Kind regards,

Case Studies in Thermal Engineering

Have questions or need assistance?
For further assistance, please visit our Customer Support site. Here you can search for solutions on a range of topics, find answers to frequently asked questions, and learn more about EVISEs via interactive tutorials. You can also talk 24/7 to our customer support team by phone and 24/7 by live chat and email.

Copyright © 2018 Elsevier B.V. | Privacy Policy

...
Reviews complete and decision pending for your manuscript CSITE_2019_450

Case Studies in Thermal Engineering <reviewsupport@elsevier.com>

To the Editor,

I am pleased to inform you that I have received all the required reviews, which I will now evaluate before making a decision on your manuscript referenced above.

In the event that I need to seek the opinion of an additional reviewer, you may see the status of your manuscript change briefly from ‘Ready for Decision’ to ‘Under Review.’

To track the status of your manuscript, please log into EVISEE http://www.evideo.com/evidio/fasa/index.jsp?controller=Ajax/ACP-CSITE and go to ‘My Submissions.’

I will inform you once I have made a decision.

Thank you again for submitting your manuscript to Case Studies in Thermal Engineering and for giving me the opportunity to consider your work.

Kind regards,
Case Studies in Thermal Engineering

Have questions or need assistance?
For further assistance, please visit our Customer Support site. Here you can search for solutions on a range of topics, find answers to frequently asked questions, and learn more about EVISEE via interactive tutorials. You can also talk 24/7 to our customer support team by phone and 24/7 by live chat and email.

Copyright © 2018 Elsevier B.V. | Privacy Policy

Decision on your submission to Case Studies in Thermal Engineering

Huifei Qiu (Case Studies in Thermal Engineering) <casestudiesupport@elsevier.com>

To:

Subject: Decision on your submission to Case Studies in Thermal Engineering

Dear Dr. Bull,

Thank you for submitting your manuscript to Case Studies in Thermal Engineering.

I have completed my evaluation of your manuscript. The reviewers recommend reconsideration of your manuscript following revision. I invite you to resubmit your manuscript after addressing the comments below:

When revising your manuscript, please consider all issues mentioned in the reviewers' comments carefully, please outline in a cover letter any change made in response to their comments and provide outside referees for any comments not addressed. Please note that your revised submission may need to be re-reviewed:

If you would like to revise your manuscript, you first need to accept this invitation:

- Log into EVSEE at: http://www.evsee.com/
- Locate your manuscript under the header ‘My Submissions that need Revisions’ on your ‘My Author Tasks’ view, and
- Click on ‘Agree to Revise’

Upon agreeing to revise your manuscript, your revision deadline will be displayed in your ‘My Author Tasks’ view.

When you are ready, please submit your revision by logging into EVSEE at: http://www.evsee.com/

Case Studies in Thermal Engineering values your contribution and I look forward to receiving your revised manuscript.

Kind regards,

Huifei Qiu
Editor-in-Chief
Case Studies in Thermal Engineering

Editor and Reviewer Comments:

- Reviewer 1

1. Typo and grammatical mistakes throughout the manuscript. Please kindly revise.

2. There are few sentences in the manuscript that are hard to understand, please recheck the sentences.

Have questions or need assistance?

For further assistance, please visit our Customer Support site. Here you can search for solutions on a range of topics, find answers to frequently asked questions, and learn more about EVSEE via interactive tutorials. You can also talk 24/7 to our customer support team by phone and 24/7 by live chat and email.
Your manuscript CSITE_2019_450_R1 has been sent for review

Case Studies in Thermal Engineering

The message was sent automatically.

Reference: CSITE_2019_450_R1

Title: Microstructure and Thermal Properties of Natural Rubber Compounded with Palm Oil Boiler Ash for Nanoparticle Filled Journal: Case Studies in Thermal Engineering

Dear Dr. Bolek,

I am currently identifying and contacting reviewers who are acknowledged experts in the field. Since peer review is a voluntary service it can take time to find reviewers who are both qualified and available. While reviewers are being contacted, the status of your manuscript will appear in EVISE as “Reviewer Invited”.

Once a reviewer agrees to review your manuscript, the status will change to “Under Review”. When I have received the required number of expert reviewers, the status will change to “Ready for Decision” while I evaluate the reviews before making a decision on your manuscript.

To track the status of your manuscript, please log into EVISE and go to “My Submissions” via http://www.evise.com/evise/nap/case_studies

Kind regards,

Case Studies in Thermal Engineering

Have questions or need assistance? For further assistance, please visit our Customer Support site. Here you can search for solutions on a range of topics, find answers to frequently asked questions, and learn more about EVISE via interactive tutorials. You can also talk to our customer support team by phone and 24/7 by live chat and email.

Copyright © 2018 Elsevier B.V. | Privacy Policy

Reviews complete and decision pending for your manuscript CSITE_2019_450_R1

Case Studies in Thermal Engineering - Elsevier Support@elsevier.com

To: me

Reference: CSITE_2019_450_R1
Title: Microstructure and Thermal Properties of Natural Rubber Compounded with Palm Oil Shells Ash for Nanoparticle Filter
Journal: Case Studies in Thermal Engineering

Dear Dr. Bull,

I am pleased to inform you that I have received all the required reviews, which I will now evaluate before making a decision on your manuscript referred above.

In the event that I need to seek the opinion of an additional reviewer, you may see the status of your manuscript report briefly from ‘Ready for Decision’ to ‘Under Review’.

To track the status of your manuscript, please log into EVISE at http://www.evises.com/evisesupport/app/web/mypaperregulated.do?EDIT_AGREEMENT&CSITE and go to ‘My Submissions’.

I will inform you once I have made a decision.

Thank you again for submitting your manuscript to Case Studies in Thermal Engineering and for giving me the opportunity to consider your work.

Kind regards,

Case Studies in Thermal Engineering

For further assistance, please visit our Customer Support site. Here you can search for solutions on a range of topics, find answers to frequently asked questions, and learn more about EVISE via interactive tutorials. You can also talk to our customer support team by phone and 24/7 by live chat and email.

Copyright © 2018 Elsevier B.V | Privacy Policy

Your manuscript CSITE_2019_450_R1 has been accepted

Ref: CSITE_2019_440_R1
Title: Microstructure and Thermal Properties of Natural Rubber Compound with Palm Oil Boilers Ash for Nanoparticle Filter
Journal: Case Studies in Thermal Engineering

Dear Dr. Bult,

I am pleased to inform you that your paper has been accepted for publication. My own comments as well as any reviewer comments are appended to the end of this letter.

Your accepted manuscript will now be transferred to our production department. We will create a proof which you will be asked to check. You can read more about this here. Meanwhile, you will be asked to complete a number of online forms required for publication. If you need additional information from you during the production process, we will contact you.

Thank you for submitting your work to Case Studies in Thermal Engineering. We hope you consider us again for future submissions.

Kind regards,

Huihe Qiu
Editor-in-Chief
Case Studies in Thermal Engineering

Comments from the editors and reviewers:
- Reviewer 1

Have questions or need assistance?
For further assistance, please visit our Customer Support site. Here you can search for solutions on a range of topics, find answers to frequently asked questions, and learn more about EVISE via interactive tutorials. You can also talk 24/5 to our customer support team by phone and 24/7 by live chat and email.

Copyright © 2019 Elsevier B.V. | Privacy Policy

Track your article [CSITE_100575] accepted in Case Studies in Thermal Engineering

Elsevier - Article Status <Article_Staging@elsevier.com>
Fri, Dec 6, 1:00 AM (3 days ago)

Please note this is a system generated email from an unmaintained mailbox. If you have any queries we really want to hear from you via our 24/7 support at http://shop.elsevier.com

Article title: Microstructure and Thermal Properties of Natural Rubber Compound with Palm Oil Boilers Ash for Nanoparticle Filler
Reference: CSITE_100575
Journal title: Case Studies in Thermal Engineering
Article Number: 100575
Corresponding author: Dr. Nurin Buitk
Final author: Dr. Nurin Buitk

Dear Dr. Buitk,

Your article Microstructure and Thermal Properties of Natural Rubber Compound with Palm Oil Boilers Ash for Nanoparticle Filler will be published in Case Studies in Thermal Engineering.

To track the status of your article throughout the publication process, please use our article tracking service:

For help with article tracking: http://help.elsevier.com/aspanswers/Detail/a_id/00

Yours sincerely,
Elsevier Author Support

HAVE A QUERY?
We have 24/7 support to answer all of your queries quickly:
http://help.elsevier.com

UNRIVALED dissemination for your work
When your article is published, it is made accessible to more than 15 million monthly unique users of ScienceDirect, ranging from scientists, researchers, healthcare professionals and students. This ensures that your paper reaches the right audience, wherever they may be on the globe, and that your research makes the greatest impact possible.

> Find new research yourself at: www.scencedirect.com

SENDER INFORMATION
This e-mail has been sent to you from Elsevier Limited, The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, United Kingdom. To ensure delivery to your inbox (not bulk or junk folders), please add Article_Status@elsevier.com to your address book or safe senders list.

PRIVACY POLICY
Please read our privacy policy.

http://www.elsevier.com/privacy-policy

[T-106-20150414]
Production has begun on your article [CSITE_100575] in Case Studies in Thermal Engineering.

A.Samamundaram <samlsevier.com>
To me.
Fri Dec 6, 9:21 AM (3 days ago)

Our reference: CSITE_1006/6
Article reference: CSITE_2019/458
Article title: Microstructure and thermal properties of natural rubber compound with palm oil biochar as for nanoparticle filler
To be published in: Case Studies in Thermal Engineering

Dear Dr. Bakti,

Thank you for choosing to publish in Case Studies in Thermal Engineering. Please read this e-mail carefully as it contains important information.

FINALIZE PUBLISHING YOUR ARTICLE:

We are eager to publish your authored articles online as quickly and efficiently as possible; therefore, please complete the forms found here:

http://authors.elsevier.com/authorsform/CSITE_100575/6/b52ab90c7f3e6be10e1e0007c

HAVE QUESTIONS OR NEED ASSISTANCE?

For further assistance, please visit our Customer Support site, where you can search for solutions on a range of topics, such as Open Access or payment queries, and find answers to frequently asked questions. You can also talk to our customer support team by phone 24 hours a day from Monday-Friday and 24/7 by live chat and email.

Get started here: http://service.elsevier.com/app/home/supporthub/publishing

Copyright © 2015 Elsevier B.V. | Privacy Policy http://www.elsevier.com/privacyPolicy

Elsevier Limited, The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, United Kingdom, Registration No. 190254
Proofs of [CSITE_100675]

corrections.elsevier@tmc.co.in

to: me

Fri, Dec 6, 2:39 AM (5 days ago)

Dear Dr. Nurend Bulut,

Thank you for publishing with Case Studies in Thermal Engineering. We are pleased to inform you that the proof for your upcoming publication is ready for review via the link below. You will find instructions on the start page on how to make corrections directly on-screen or through PDF.

https://elsevierproofcentral.com/prooflanding.page?htmlPath=ocomore%3C%3E9a173c22f7e0f5c391f175f3711693184

Please open this hyperlink using one of the following browser versions:

- Google Chrome 59+
- Mozilla Firefox 45+
- Mac OS Safari 10+

(Those: Microsoft Edge not supported at the moment)

We ask you to check that you are satisfied with the accuracy of the copy-editing, and with the completeness and correctness of the text, tables and figures. To assist you with this, copy-editing changes have been highlighted.

You can save and return to your article at any time during the correction process. Once you make corrections and hit the SUBMIT button you can no longer make further corrections. If you require co-authors to also review the proof, note that only one person may be working on the proof in the system at a time. Please make sure to only hit the SUBMIT button once all reviews are complete. When multiple authors are expected to make corrections, we recommend you to make use of the "Collaboration" feature.

We will do everything possible to get your article published quickly and accurately. The sooner we hear from you, the sooner your corrected article will be published online. You can expect your corrected proof to appear online within a week after we receive your corrections.

We very much look forward to your response.

Yours sincerely,

Elsevier

E-mail: corrections.elsevier@tmc.co.in

For further assistance, please visit our customer support site at [elsevier.com]. Here you can search for solutions on a range of topics. You will also find our 24/7 support contact details should you need any further assistance from one of our customer support representatives.
Your article [CSITE_100575] is now available online

Article title: Microstructure and thermal properties of natural rubber compound with palm oil boilers ash for nanoparticle filter
Article reference: CSITE 100575
Journal title: Case Studies in Thermal Engineering
Article Number: 100575
Corresponding author: Dr. Nordin Bukit
First author: Dr. Eva Maria Breivig
First published version available online: 8-Oct-2019
DOI information: 10.1016/j.csite.2019.100575

Dear Dr. Bukit,

We are pleased to inform you that your article is now available online at:

https://doi.org/10.1016/j.csite.2019.100575

You might like to bookmark this permanent URL to your article.

The first published version of your article is made available at an early stage to provide fast access to your article and is not intended to be the final version of your article. The article will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note changes to the article should not be requested at this stage.

This version will be replaced by the final version as soon as this is available.

Your article can already be cited using the year of online availability and the DOI as follows: Author(s), Article Title, Journal (Year), DOI.

Once the full bibliographic details (including volume and page numbering) for citation purposes are available, you will be alerted by e-mail.

To track the status of your article throughout the publication process, please use our article tracking service:

https://authors.elsevier.com/trackingarticledetails.do?aid=100575&jid=CSITE&surName=Bukit

Kind regards,
Elsevier Author Support

HAVE QUESTIONS OR NEED ASSISTANCE?
For further assistance, please visit our Customer Support site where you search for solutions on a range of topics and find answers for frequently asked questions. You can also talk to our customer support team by phone 24 hours a day from Monday-Friday and 24/7 by live chat and email.
Get started at: http://service.elsevier.com

© 2019 Elsevier Ltd | Privacy Policy http://www.elsevier.com/privacy policy
Reference: CSITE_2019_450_R1
Title: Microstructure and Thermal Properties of Natural Rubber Compound with Palm Oil Boilers Ash for Nanoparticle Filler
Journal: Case Studies in Thermal Engineering

Dear Dr. Ginting,

I am pleased to inform you that your paper has been accepted for publication. My own comments as well as any reviewer comments are appended to the end of this letter.

Your accepted manuscript will now be transferred to our production department. We will create a proof which you will be asked to check. You can read more about this here. Meanwhile, you will be asked to complete a number of online forms required for publication. If we need additional information from you during the production process, we will contact.

Thank you for submitting your work to Case Studies in Thermal Engineering. We hope you consider us again for future submissions.

Kind regards,

Huihe Qiu
Editor-in-Chief
Case Studies in Thermal Engineering

Comments from the editors and reviewers:
- Reviewer 1

- The manuscript would like recommend to be published in Case Studies in Thermal Engineering.
Microstructure and thermal properties of natural rubber compound with palm oil boilers ash for nanoparticle filler

Eva Marlina Ginting, Nurdin Bukit, Erna Frida, Bunga Fisikanta Bukit

PII: S2214-157X(19)30455-1
DOI: https://doi.org/10.1016/j.csite.2019.100575
Reference: CSITE 100575

To appear in: Case Studies in Thermal Engineering

Received Date: 13 November 2019
Revised Date: 28 November 2019
Accepted Date: 5 December 2019

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.
Microstructure and Thermal Properties of Natural Rubber Compound with Palm Oil Boiler Ash for Nanoparticle Filler

Eva Marlina Ginting*, Nurdin Bukit*, Erna Frida, Bunga Fisikanta Bukit

*Department of Physics, Universitas Negeri Medan, 20221 Medan Indonesia
Faculty of Engineering, Universitas Quality, 12345 Medan Indonesia
Department of Physics, Universitas Quality Berastagi, 22153 Berastagi Sumatera Utara Indonesia

Corresponding author email: *eva.marlina@unimed.ac.id; *nurdinbukit5@gmail.com

ABSTRACT.
This study aims to determine the properties of natural rubber compounds by varying the Oil Palm Boiler Ash (OPBA) nanoparticles with variations (0,2,4,6 and 8) wt%. The preparation method for natural rubber compounds uses Open Mill by mixing Indonesian Rubber Standard-20 (SIR-20) with anti-oxidants, activators, preservatives, accelerators, and OPBA nanoparticle fillers. The results showed thermal properties with Differential Scanning Calorimetric (DSC) increased melting point and the presence of cross bonds with increasing OPBA composition compared without filler. The distribution of compounds occurs even with the addition of OPBA filler. The results of the XRD diffraction pattern analysis of natural rubber composites without fillers amorphously shaped, but with the addition of OPBA fillers, the diffraction pattern showed a crystal structure. The FTIR graph shows that there is no significant difference between compounds with and without fillers.

Keyword: compound, natural rubber, OPBA

1. Introduction

Indonesia, Malaysia, and Thailand are the countries producing palm oil [1]. Palm oil has many uses, not only the fruit but also almost all parts of the tree can be used. Scientific and technological advances have increased yields. Palm oil products now also function as raw materials for the manufacture of various synthetic materials, medicines, and household materials [2]. An example of palm oil waste is oil palm crust ash originating from a boiler. Oil Palm Boiler Ash (OPBA) is ash from shells and fruit fibers that have been crushed and burned at a temperature of 500 to 700°C in a boiler furnace. OPBA is an environmental problem because it is a waste of the palm oil mill industry. OPBA is biomass with silica content (SiO₂) 49.50%, Al₂O₃ 5.45%, and Fe₂O₃ 5.73%. OPBA can replace carbon black as a filler in the manufacture of natural rubber compounds [3-8]. Alumina is a ceramic oxide material that has the potential to be used in various engineering products [9].

OPBA is a hydrophilic inorganic compound. Therefore, to produce compatibility with polymers, it is necessary to modify OPBA before synthesizing it into nanocomposites. Modifying the OPBA surface using NaOH and HCl solutions, and changing its size to nano by coprecipitation method is a simple method.

Natural rubber is an isoprene polymer (C₅H₈) which has a molecular weight. Hevea rubber derived from the Hevea Brasiliensis tree is a natural form of 1,4 - polyisoprene. The use of cis - 1.4 polyisoprene is more than 90% in the rubber industry. Natural rubber is one of the most useful materials in engineering applications. This is because rubber has a natural
softness and elasticity. Even so, the use of fillers is also useful to get the desired product. [10-11].

To increase the value and the production of natural rubber, it needs to be modified. One type of modification natural rubber is by adding fillers. To improve the quality of rubber, the technique used in rubber is by adding a laxative to the compound.

Almost all rubber compounds use carbon black (CB) as a filler. The filler functions as a reinforcement, enlarge the volume, and improve the physical properties of rubber goods and strengthen the volcanic. The resulting rubber compound is useful in making shoe soles, gloves, vehicle tires, and others. Generally, natural rubber which has a non-polar chain is modified first, so that compatibility and reactivity of natural rubber are increased in mixing. The rubber modification method that has been used is halogenation [12].

This study aims to examine the effect of the composition of OPBA nanofiller particles on natural rubber compounds as a substitute for carbon black. Characterization of thermal properties, functional groups, diffraction patterns, and morphology was carried out to determine the results.

Conflicts of interest.

a.OPBA can be used as a substitute for carbon black in the manufacture of rubber compounds
b.Use of waste from the palm oil mill industry

2. Materials and methods

2.1. Material.
Indonesian Standard Rubber-20 natural rubber (SIR-20), nanoparticle OPBA size 56.31 nm research results [9], Zinc Oxide (ZnO), Stearic Acid, Wax, N-Isopropyl-N'-Phenyl-p-phenylenediamine (IPPD), Tetra Methyl Thiura Disulfarat (TMTD), Marcapto Benzhoathizole Disulfide (MBTS), Sulfur.

2.2. Rubber Compound Preparation.
Preparation of rubber compounds using Open mill tools. Materials such as SIR-20 natural rubber, zinc oxide (ZnO), stearic acid, nanoparticle OPBA, Wax, IPPD, TMTD, MBTS are mixed. Table 1. shows the variation of OPBA filler compositions. All ingredients blended using two roll mixing mill, then ground until the rubber is completely solid. While the rubber grinding process is running, the ingredients are inserted one by one in stages into the rheometer
Table 1.
The Formula Used for Preparation of Natural Rubber Compound with OPBA filler

<table>
<thead>
<tr>
<th>No</th>
<th>Materials</th>
<th>S_0</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NR SIR-20</td>
<td>100</td>
<td>98</td>
<td>96</td>
<td>94</td>
<td>92</td>
<td>Binder</td>
</tr>
<tr>
<td>2</td>
<td>Wax</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>Antilux</td>
</tr>
<tr>
<td>3</td>
<td>Filler(OPBA)</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>Filler</td>
</tr>
<tr>
<td>4</td>
<td>ZnO</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>Activator</td>
</tr>
<tr>
<td>5</td>
<td>Stearic acid</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>Activator</td>
</tr>
<tr>
<td>6</td>
<td>Sulfur</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Curing agent</td>
</tr>
<tr>
<td>7</td>
<td>IPPD</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>Antioxidant</td>
</tr>
<tr>
<td>8</td>
<td>TMTD</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>Accelerator</td>
</tr>
<tr>
<td>9</td>
<td>MBTS</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>Accelerator</td>
</tr>
</tbody>
</table>

3. Results and discussion

The sample weight is 10-15 mg. Determine heat vulcanization by integrating the area under the exothermic calorimetry signal. DSC testing with a temperature range of 25°C to 600°C, where the heating rate setting is at 5°C/min. DSC test results are thermogram curves that are useful for determining the melting temperature. According to its classification, calorimetry is a technique for determining the amount of heat absorption or released by a substance undergoing physical or chemical changes. At constant pressure, internal energy functions as the enthalpy of H. The peak area of the DSC is useful for estimating the enthalpy of transition, ΔH. In general, this DSC analysis can be used to determine the enthalpy by measuring the differential heat flow needed to keep the sample material and the inert reference at the same temperature. One of the information obtained in semi-crystalline polymers is the material's crystallinity. Both the mechanical, physical, and chemical properties of the sample depend on the composition of the mixture and crystallization conditions such as temperature, pressure, orientation weight, molecule, and diluent [13]. The melting point is a parameter for polymeric materials because it represents the minimum temperature for processing. The melting point is dependent on the chemical structure of the material, the size, and the regularity of crystallization [14].

Table 2.
Melting point natural rubber compound with OPBA filler

<table>
<thead>
<tr>
<th>Sample (wt %)</th>
<th>Onset (C)</th>
<th>Peak (C)</th>
<th>Endset (C)</th>
<th>Heat Area (mJ)</th>
<th>Heat Delta (J/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>370.44</td>
<td>374.44</td>
<td>384.14</td>
<td>65.29</td>
<td>8.37</td>
</tr>
<tr>
<td>2</td>
<td>346.10</td>
<td>366.77</td>
<td>387.44</td>
<td>439.59</td>
<td>56.36</td>
</tr>
<tr>
<td>4</td>
<td>341.69</td>
<td>369.68</td>
<td>380.00</td>
<td>423.14</td>
<td>50.37</td>
</tr>
<tr>
<td>6</td>
<td>333.40</td>
<td>363.48</td>
<td>382.41</td>
<td>485.52</td>
<td>57.80</td>
</tr>
<tr>
<td>8</td>
<td>333.01</td>
<td>360.64</td>
<td>375.70</td>
<td>446.55</td>
<td>57.25</td>
</tr>
</tbody>
</table>
Table 2 and Fig. 1 show, the melting point of natural rubber compound with OPBA filler, where the heated area is increases with increasing filler composition from 0 wt% to 8 wt%. Where in the composition of 0 wt% is obtained 65.29 mJ and 6 wt% is 485.52 mJ. This is due to the increased silica content present in the natural rubber compound so that it increases the melting point when compared to without silica at 0 wt%. Whereas the melting point from the initial temperature of 333.10°C to the final temperature of 387.44°C changes in the peak temperature there is little change with the increase in the composition of OPBA from fillers from 2 to 8% wt from 360.64°C to 366.77°C.

![DSC Thermogram of natural rubber compound with OPBA filler (0-8)wt%](image)

Fig. 1. DSC Thermogram of natural rubber compound with OPBA filler (0-8)wt%

3.2. Scanning Electron Microscope (SEM) Analysis

Morphological Analysis of Natural rubber compound with OPBA filler.

Micrograph SEM blends NR / OPBA with a weight ratio (0.2, 4, 6, 8) wt% vulcanized using sulfur 3 phr is shown in Fig. 2. The magnification scale that will be used for this research is 2000 magnification. The micrograph shows the distribution and particle size of OPBA dispersed in the NR matrix, which is influenced by OPBA composition and vulcanization. Increased OPBA composition results in a more evenly distributed and smaller particle size distribution. Differences in particle distribution cause the mechanical properties of the blend to also be different. The distribution and size of the phase are also influenced by the stress history that occurs during the mixing process. Stress history acts to interact with OPBA particles and distribute them into the NR matrix. Natural rubber and its composites show the presence of nano-sized particles which can improve the mechanical properties of the compound [15].

From Fig. 2 a to e, it can be seen that the spread of filler is evenly distributed, due to the good interaction between the filler and rubber. This indicates that rubber and filler interactions indicate improved mechanical properties compared without fillers or OPBA. Empty cavities occur because of the OPBA tendency to form agglomeration due to silica in having a hydroxyl group that will try to help hydrogen bond with silica molecules or other chemical...
materials that are polar and do not show a de-adhesion phenomenon that occurs at the interface of the natural rubber matrix and fillers such as discovered by [16].

Fig. 2. Morphology of natural rubber compound with OPBA filler (a) 2 wt%, (b) 4 wt%, (c) 6 wt% (d) 8 wt%, (e) non filler

3.3 Analysis of Fourier Transform Infra-Red (FTIR)

FTIR spectra use the Perkin-Elmer System Spectrum One Fourier-transform infrared spectrophotometer. FTIR spectrophotometer is a tool to identify compounds, especially organic compounds, both qualitatively and quantitatively. Conduct analysis by looking at the shape of the spectrum by looking at specific peaks that indicate the type of functional group possessed by this compound. Whereas quantitative analysis uses standard compounds whose spectrum is made at various concentrations. Fig.3 shows the FTIR graph between nanocomposites with the addition of OPBA fillers and without fillers. The main function of infrared spectrometry is to recognize (explain) the structure of molecules, especially functional groups such as OH, C = O, C = C. The most useful area to recognize the structure of a compound is in the region of 1 -25 µm or 10,000 - 400 cm$^{-1}$.
The results of FTIR characterization on nanocomposite samples with OPBA filler indicate the existence of several vibrational bonds. The C-H bond with hydrogen is attached to the absorbing carbon in the region between 2853 - 2962 cm\(^{-1}\). Peak 1475-1300 also shows C-H bending. Peak 1000-650 shows C = C-H, Ar-H bending. The FTIR graph between nanocomposites with the addition of OPBA fillers and without fillers shows that there is no significant difference. This is confirmed by the results of previous studies [17].

3.4 X-Ray Diffraction (XRD) Analysis

XRD (X-Ray Diffraction) testing is done to get diffraction patterns of crystalline structures. The XRD used was Shimadzu 6100 (40 kV, 30 mA) with a wavelength of Cu-K\(_{a1}\) = 1.5405 Å, at a rate of 2\(^\circ\) min in the angular range of 2\(\Theta\) = 5\(^\circ\)-70\(^\circ\).

Fig. 4 shows the XRD diffraction pattern for natural rubber compounds by adding OPBA to the polymer matrix with a composition of (0,2,4,6,8) wt% . At an angle of 2\(\Theta\) = 20\(^\circ\) at d\(_{hkl}\), 100 for rubber compound without filler. Compound without filler has a maximum intensity and amorphous structure. The addition of OPBA filler composition intensity decreases the diffraction pattern of natural rubber compounds to a crystal pattern. Likewise, the angle 2\(\Theta\) = 30\(^\circ\) at d\(_{hkl}\)110. This change shows that there is an intercalation between natural rubber polymers and OPBA. With the increasing of OPBA in natural rubber compounds, the SiO\(_2\) content at d\(_{hkl}\)30\(^\circ\) at an angle of 2\(\Theta\) = 65\(^\circ\) is seen to increase. The addition of OPBA filler with Al\(_2\)O\(_3\) intensity at d\(_{hkl}\) 213 angles 2\(\Theta\) = 45\(^\circ\) can change the amorphous phase to the crystalline phase as a consequence of molecular diffusion during treatment [16]. OPBA has an amount of silica according to the results of the study [18]. From these characteristics, the addition of OPBA can improve mechanical properties [15,19,20].
4. Conclusion
The results showed that the thermal properties of natural rubber compounds increased the melting point and cross-linking with an increase in OPBA composition. Morphology shows a homogeneous mixture. The XRD pattern shows that the mixture without filler has an amorphous structure, whereas, with the addition of OPBA, the diffraction pattern becomes crystal. The FTIR graph shows that there is no significant difference between compounds with and without fillers.

Acknowledgements
The author would like to thank for The Based Research 2019 funding with Contract Number: 41 / UN33.8 / PL-DRPM / 2019, from the Directorate of Research and Community Service, Directorate General of Research and Development Strengthening, Ministry of Research, Technology and Higher Education of the Republic of Indonesia.
References

Conflict Interest

Authors confirmed that have not conflict of interest in our article.
Author Agreement

Ref: CSITE_2019_450
Title: Microstructure and Thermal Properties of Natural Rubber Compound with Palm Oil Boilers Ash for Nanoparticle Filler
Journal: Case Studies in Thermal Engineering

Authors agreement the article would like to be publish in Case Studies In Thermal Engineering. The author list are:

Eva Marlina Ginting*
Department of physics, Universitas Negeri Medan, 20221 Medan Indonesia

Nurdin Bukit*
Department of physics, Universitas Negeri Medan, 20221 Medan Indonesia

Erna Frida
Faculty of Engineering, Universitas Quality, 12345 Medan Indonesia

Bunga Fisikanta Bukit
Department of physics, Universitas Quality Berastagi, 22153 Berastagi Sumatera Utara Indonesia

Coresponding author*email: *eva.marlina@unimed.ac.id; *nurdbukit5@gmail.com