DAFTAR GAMBAR

	Halaman
Gambar 2.1.(a)ABKS hasil dari industri, (b)ABKS dalam ukuran nano	9
Gambar 2.2.Karet SIR-20	12
Gambar 2.3. Kristal High Density Polyetilen (HDPE)	19
Gambar 2.4. Klasifikasi Skematik dari Termoplastik Elastomer Komersil	22
Gambar 2.5. Hasil pengujian morfologi campuran Karet Alam/PP	
menggunakan SEM dengan rasio berat (a) 10/90 dan (b) 50/50	26
Gambar 2.6. X-Ray Diffraction	27
Gambar 2.7. Puncak ukuran difraksi dan ukuran kristalin	29
Gambar 2.8. Pola XRD dari sampel HDPE dengan pengisi Zeolit	
yang tidak dikalsinasi, (a) 0 wt%, (b) 2 wt%, (c) 4 wt%, dan (d) 6 wt%	29
Gambar 3.1. Diagram Alir Penelitian tahap I	34
Gambar 3.2. Diagram Alir Penelitian Tahap II	35
Gambar 3.3. Diagram Alir Penelitian tahap III	36
Gambar 3.4. Proses ballmill	37
Gambar 3.5. Proses pengayakan abks dalam ukuran 74 µm	38
Gambar 3.6. Proses Kopresipitasi	38
Gambar 3.7. Proses pengeringan nanopartikel ABKS	39
Gambar 3.8. Hasil cetak tekan panas dan tekan dingin TPE	42
Gambar 3.9. Standart ukuran JIS K 6781	42
Gambar 3.10. Sampel dipotong dengan mesin dumbbell	43
Gambar 4.1.Serbuk Nanopartikel ABKS	44
Gambar 4.2. Pola difraksi XRD nanopartikel ABKS	45
Gambar 4.3. Morfologi abks murni (a) dan dalam ukuran nano (b)	46
Gambar 4.4. Grafik Unsur yang terkandung dalam nanopartikel abks	47
Gambar 4.5. Grafik kekuatan tarik terhadap regangan pada	
HDPE/PE.gMA/Kompon SIR-20/Nano ABKS 0%	48
Gambar 4.6. Grafik kekuatan tarik terhadap regangan pada	
HDPE/PE.gMA/Kompon SIR-20/Nano ABKS 2%	49
Gambar 4.7. Grafik kekuatan tarik terhadap regangan pada	
HDPE/PE.gMA/Kompon SIR-20/Nano ABKS 4%	50
Gambar 4.8. Grafik kekuatan tarik terhadap regangan pada	r Jeros Sara
HDPE/PE.gMA/Kompon SIR-20/Nano ABKS 6%	50
Gambar 4.9. Grafik kekuatan tarik terhadap regangan pada	7
HDPE/PE.gMA/Kompon SIR-20/Nano ABKS 8%	51
Gambar 4.10. Morfologi termoplastik elastomer tanpa pengisi ABKS	52
Gambar 4.11. Morfologi termoplastik elastomer pengisi ABKS	52
Gambar 4.12. Pola difraksi XRD nanopartikel ABKS	53
Gambar 4.13. Hubungan kekuatan tarik terhadap nanopartikel ABKS	55

Gambar 4.14. Hubungan Modulus Young terhadap nanopartikel ABKS	55
Gambar 4.15. Hubungan regangan putus terhadap nanopartikel ABKS	56
Gambar 4.16. Morfologi termoplastik elastomer tanpa pengisi ABKS	58
Gambar 4.17. Morfologi termoplastik elastomer pengisi ABKS 2%wt (250KX)	59

