Dear Dr. Diky Setya Diningrat,

This is with regard to your submitted manuscript, 86564-IJP-ANSI, titled Antimicrobial Profile of Premna pubescens. Blume and Centella asiatica Extracts Against Bacteria and Fungi Pathogens, submitted to International Journal of Pharmacology on August 09, 2017 for consideration as a Research Article.

The article has been accepted for publication after revision. A Peer Review report is available online and you can access this report after log in to your account with User ID: dikysetyadiningrat@gmail.com.

If you have forgot your password, you may retrieve your password from the following link by providing your User ID dikysetyadiningrat@gmail.com.

http://scialert.com/forgot_password.php

It is therefore, requested to please submit revised version of your article urgently for further processing.

Please let us know when we can expect the revised version of your manuscript.

We look forward to hearing from you.

Regard,
Madiha Saeed
Academic Editor
International Journal of Pharmacology
Status has been changed for your article No. 86564-IJP-ANSI

Dear Diky Setya Diningrat,

Status of your above mentioned manuscript has been changed. Current status of your manuscript is as under:

Manuscript has been accepted for publication (Pending for Payment)

For further information, please logon the system at http://www.scialert.com/login.php with your user id and password.

Best Regards
Science Alert Support Team

Science Alert no-reply@scialert.com via smtpserver.email to me

Dear Diky Setya Diningrat,
Dear Diky Setya Diningrat,

Status of your above mentioned manuscript has been changed. Current status of your manuscript is as under:

Manuscript assigned to production department for layout designing

For further information, please logon the system at http://www.scialert.com/login.php with your user id and password.

Best Regards
Science Alert Support Team
Dear Diky Setya Diningrat,

Thanks for your email. It is to inform you that we safely received your payment. Now layout designing. Soon you will receive the galley proof of your article.

Your patience in this regard would be highly appreciated.

Regards
Madiha Saeed
Academic editor
Science Alert Support Team
Dear Dr. Diky Setya Diningrat

This is with regard to your submitted manuscript, 86564-IJP-ANSI, titled Antimicrobial Profile of Prunus pubescens Blume and Centella asiatica Extracts Against Bacteria and Fungi Pathogens, submitted to International Journal of Pharmacology on August 09, 2017 for consideration as a Research Article.

The above mentioned manuscript has been finally accepted by the Reviewer for publication in International Journal of Pharmacology as Research Article. You may download the final acceptance letter after log in to your account with User ID dikysetyadiningrat@gmail.com.

Before we can continue with final production, it is mandatory to pay Article Processing Charges. Articles published in our journals are open access and freely available online, immediately upon publication, made possible by an article-processing charge (APC) that covers the range of publishing services we provide. This includes provision of online tools for editors and authors, article production and hosting with abstracting and indexing services, and customer services. The APC, payable when your manuscript is editorially accepted and before publication, is charged to either you, or your funder, institution or employer.

You may download the invoice after log in to your account with User ID: dikysetyadiningrat@gmail.com.

If you have forgot your password, you may retrieve your password from the following link by providing User ID dikysetyadiningrat@gmail.com.

http://scialert.com/forgot_password.php
Transaction confirmation

Science Alert <no-reply@telr.com>
to me

Transaction confirmation

Science Alert

Transaction reference: 040010307522
Transaction type: Sale
Amount: $1,000.00
Description: Publication / Processing Charges
Time: 10:20 AM on Friday the 20th of October, 2017
Authorisation Code: 770018
Card: Visa Debit ending 1877

Please retain this receipt for your records.

For more information, please visit http://sciencealert.ae or contact sarwarm@sciencealert.ae
Re: Submission of Final Proof Corrections (scialert.com)

Science Alert support@scialert.com via smtpserver.email
to me

Dear Author,
Thanks for your email. We safely received your revise article. Now it has been assigned to the academic editor for further action.
Regard
Madiha Saeed
Academic Editor

Science Alert support@scialert.com via smtpserver.email
to me

Dear Author,
Thanks for your email. We safely received your revise article. But currently it has been assigned to the academic editor for further action.
Dear Author,

Thanks for your email. We safely received your revise article. But currently it has been assigned to the editor for further action.

Regard
Madiha Saeed
Academic Editor
Dear Dr. Diky Setya Diningrat

This is with regard to your submitted manuscript, 86564-IJP-ANSI, titled Antimicrobial Profile of Propubescens. Blume and Centella asiatica Extracts Against Bacteria and Fungi Pathogens, submitted to International Journal of Pharmacology on August 09, 2017 for consideration as a Research Article.

The article has been accepted for publication after revision. A Peer Review report is available online. You can access this report after logging in to your account with User ID: dikysetyadiningrat@gmail.com.

If you have forgotten your password, you may retrieve your password from the following link by providing your User ID: dikysetyadiningrat@gmail.com.

http://scialert.com/forgot_password.php

It is therefore, requested to please submit a revised version of your article urgently for further processing.

Please let us know when we can expect the revised version of your manuscript.

We look forward to hearing from you.
Dear Dr. Diky Setya Dinningrat,

This is with regard to your submitted manuscript, 86564-IJP-ANSI, titled Antimicrobial Profile of Prunus pubescens. Blume and Centella asiatica Extracts Against Bacteria and Fungi Pathogens, submitted to International Journal of Pharmacology on August 09, 2017 for consideration as a Research Article.

The article has been accepted for publication after revision. A Peer Review report is available online. You can access this report after log in to your account with User ID: dikysetyadiningrat@gmail.com.

If you have forgot your password, you may retrieve your password from the following link by providing your User ID dikysetyadiningrat@gmail.com.

http://scialert.com/forgot_password.php

It is therefore, requested to please submit revised version of your article urgently for further processing.

Please let us know when we can expect the revised version of your manuscript.

We look forward to hearing from you.

Science Alert support@scialert.com via smtpserver.email
Dear Dr. Diky Setya Diningrat

This is with regard to your submitted manuscript, 86564-IJP-ANSI, titled Antimicrobial Profile of Pri
tubescens Blume and Centella asiatica Extracts Against Bacteria and Fungi Pathogens, submitte
to International Journal of Pharmacology on August 09, 2017 for consideration as a Research Article.

The article has been accepted for publication after revision. A Peer Review report is available onlin
can access this report after log in to your account with User ID: dikysetyadiningrat@gmail.com.

If you have forgot your password, you may retrieve your password from the following link by provid
User ID dikysetyadiningrat@gmail.com.

http://scialert.com/forgot_password.php

It is therefore, requested to please submit revised version of your article urgently for further proces

Please let us know when we can expect the revised version of your manuscript.

We look forward to hearing from you.
Dear Dr. Diky Setya Diningrat

This is with regard to your submitted manuscript, 86564-IJP-ANSI, titled Antimicrobial Profile of Prunus pubescens. Blume and Centella asiatica Extracts Against Bacteria and Fungi Pathogens, submitted to International Journal of Pharmacology on August 09, 2017 for consideration as a Research Article.

The article has been accepted for publication after revision. A Peer Review report is available online. You can access this report after log in to your account with User ID: dikysetyadiningrat@gmail.com.

If you have forgot your password, you may retrieve your password from the following link by providing your User ID: dikysetyadiningrat@gmail.com.

http://scialert.com/forgot_password.php

It is therefore, requested to please submit revised version of your article urgently for further processing.

Please let us know when we can expect the revised version of your manuscript.

We look forward to hearing from you.
Dear Author,

Thanks for your email. We safely received your revise article. Now it has been assigned to the academic editor for further action.

Regard

Madiha Saeed
Academic Editor
Dear Dr. Diky Setya Diningrat,

I hope you will receive this email with good health.

Thanks for being registered with Science Alert online manuscript submission and peer review system that helps to submit articles to more than 150 peer reviewed journals with one account. Science Alert encourages all authors to register for a LiveDNA ID and associate it with your Science Alert account.

LiveDNA is a unique and persistent identifier that distinguishes you from every other researcher, it connects you to your research activities, so you can always get the credit for your work.

Your current Science Alert profile status is as “non-registered member”. To register your LiveDNA we need the most recent copy of your CV immediately, so that we may get your profile updated as early as possible and update your Science Alert profile.

Your quick response would be highly appreciated.
Dear Dr. Diky Setya Diningrat,

This is with regard to your submitted manuscript, 86564-IJP-ANSI, titled Antimicrobial Profile of P. pubescens. Blume and Centella asiatica Extracts Against Bacteria and Fungi Pathogens, submitted to International Journal of Pharmacology on August 09, 2017 for consideration as a Research Article.

The article has been accepted for publication after revision. A Peer Review report is available online. You can access this report after log in to your account with User ID: dikysetyadiningrat@gmail.com.

If you have forgot your password, you may retrieve your password from the following link by providing your User ID dikysetyadiningrat@gmail.com.

http://scialert.com/forgot_password.php

It is therefore, requested to please submit revised version of your article urgently for further processing.

Please let us know when we can expect the revised version of your manuscript.

We look forward to hearing from you.

Science Alert support@scialert.com via smtpserver.email to me
86564-IJP-ANSI - Request for Revised Article

Dear Dr. Diky Setya Diningrat

This is with regard to your submitted manuscript, 86564-IJP-ANSI, titled Antimicrobial Profile of Prunus pubescens. Blume and Centella asiatica Extracts Against Bacteria and Fungi Pathogens, submitted to International Journal of Pharmacology on August 09, 2017 for consideration as a Research Article.

The article has been accepted for publication after revision. A Peer Review report is available online. You can access this report after log in to your account with User ID: dikysetyadiningrat@gmail.com. If you have forgot your password, you may retrieve your password from the following link by providing your User ID: dikysetyadiningrat@gmail.com. http://scialert.com/forgot_password.php

It is therefore, requested to please submit revised version of your article urgently for further processing.

Please let us know when we can expect the revised version of your manuscript.

We look forward to hearing from you.

Science Alert support@scialert.com via smtpserver.email to me
Dear Dr. Diky Setya Diningrat,

This is with regard to your submitted manuscript, 86564-IJP-ANSI, titled Antimicrobial Profile of Propionibacterium prepubescens, Blume and Centella asiatica Extracts Against Bacteria and Fungi Pathogens, submitted to International Journal of Pharmacology on August 09, 2017 for consideration as a Research Article.

The article has been accepted for publication after revision. A Peer Review report is available online. You can access this report after log in to your account with User ID: dikysetyadiningrat@gmail.com.

If you have forgot your password, you may retrieve your password from the following link by providing your User ID: dikysetyadiningrat@gmail.com.

http://scialert.com/forgot_password.php

It is therefore, requested to please submit revised version of your article urgently for further processing. Please let us know when we can expect the revised version of your manuscript.

We look forward to hearing from you.

Science Alert support@scialert.com via smtpserver.email to me
Dear Martina Restuati,

This is with regard to your submitted manuscript, 86564-IJP-ANSI, titled Antimicrobial Profile of Prunus pubescens, Blume and Centella asiatica Extracts Against Bacteria and Fungi Pathogens, submitted to International Journal of Pharmacology on August 09, 2017 for consideration as a Research Article.

The article has been accepted for publication after revision. A Peer Review report is available online, and the corresponding author can access this report after logging in to his/her account.

It is therefore, requested to please submit revised version of your article urgently for further processing.

Please let us know when we can expect the revised version of your manuscript.

We look forward to hearing from you.

Regard,

Madiha Saeed
Academic Editor
86564-IJP-ANSI - Request for Revised Article

Science Alert support@scialert.com via smtpserver.email
to me

Dear Dr. Diky Setya Diningrat

This is with regard to your submitted manuscript, 86564-IJP-ANSI, titled Antimicrobial Profile of Prunus pubescens. Blume and Centella asiatica Extracts Against Bacteria and Fungi Pathogens, submitted to International Journal of Pharmacology on August 09, 2017 for consideration as a Research Article.

The article has been accepted for publication after revision. A Peer Review report is available online. You can access this report after log in to your account with User ID: dikysetyadiningrat@gmail.com.

If you have forgot your password, you may retrieve your password from the following link by providing your User ID dikysetyadiningrat@gmail.com.

http://scialert.com/forgot_password.php

It is therefore, requested to please submit revised version of your article urgently for further processing.

Please let us know when we can expect the revised version of your manuscript.

We look forward to hearing from you.
Dear Diky Setya Diningrat,

Status of your above mentioned manuscript has been changed. Current status of your manuscript is as under:

Manuscript Accepted after Revision

For further information, please logon the system at http://www.scialert.com/login.php with your user id and password.

Best Regards

Science Alert Support Team
Status has been changed for your article No. 86564-IJP-ANSI

Science Alert no-reply@scialert.com via smtpserver.email
to me

Dear Diky Setya Diningrat,

Status of your above mentioned manuscript has been changed. Current status of your manuscript is as under:

Manuscript assigned to Reviewer for Scientific Review

For further information, please logon the system at http://www.scialert.com/login.php with your user id and password.

Best Regards
Science Alert Support Team
Your paper has undergone first reviews. You received two reviews from two independent reviewers who don’t know your identity. Their remarks are impartial, focused on the merit and academic quality of your paper. They are renowned professionals with huge experience in publishing and reviewing papers in your field of study. You may disagree with some of their remarks but keep in mind that the reviewers are experts in your chosen topic and they will help you improve your paper. It is normal even for experienced conservators and researchers to receive huge numbers of remarks from reviewers.

The authors are obliged by the publishing agreement to carry out all the changes advised by reviewers within a deadline set by the editor. Refusal or not providing the amended document on time will result in rejecting your paper for publication.

Overall comments:

Author is advised to re-write the full text carefully with the help of English Language Expert and correct the spelling, grammar, punctuation and vocabulary usage errors. Provide English Language Editing certificate

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Part of the Manuscript</th>
<th>Reviewer’s Comments</th>
<th>Response of Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Corresponding Author</td>
<td>Who is the corresponding author? One author must be designated as “Corresponding Author”. Name with contact details (E-mail address, full postal address and Telephone number) of corresponding author should be mentioned here clearly</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Running Title</td>
<td>Provide the running title of the article as it is necessary according to the format of the journal.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>liveDNA</td>
<td>From January 1, 2017, it's compulsory for all corresponding authors submitting papers to any Science Alert Journal to provide LiveDNA iDs (livedna.net) before final publication of their articles. With this standard identifier, you can create a profile of your research activities to distinguish yourself from other researchers with similar names, and make it easier for your colleagues to find your publications. To get LiveDNA, please go to the link: http://livedna.net/form.php</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Conflict of</td>
<td>A statement on conflicts of interest should be included in the manuscript. Either</td>
<td></td>
</tr>
<tr>
<td>Interest</td>
<td>mention: ‘none declared’, or specify the authors’ financial or other interests which should be known to the readers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Author's contribution</td>
<td>There is a series of questions that will enable you to state the contributions of each author. Each author listed on the manuscript should have a real and concrete contribution to the submission. Every single person who contributed to the manuscript should be listed. More information about authorship can be collected from Editorial Policies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Significance statement</td>
<td>A statement about the significance of this research work should be included in the manuscript. The significance statement should provide the novelty aspect and significance of this research work with respect to the existing literature and more generally to the society. It should be a short summary which describe what this paper adds to and what was already known. Start this statement with the following words: This study discovers the --------------- that can be beneficial for And the last sentence of this statement could be such as: This study will help the researcher to uncover the critical area of --------------- that many researchers were not able to explore. Thus a new theory on --------------- may be arrived at. A Model Significance Statement: This study discovers the possible synergistic effect of vitamin E, calcium, and vitamin D combination that can be beneficial for osteoporosis-induced ovariectomized rats. This study will help the researcher to uncover the critical area of postmenopausal bone loss that many researchers were not able to explore. Thus, a new theory on these micronutrients combination, and possibly other combinations, may be arrived at.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Abstract</td>
<td>Which Statistical method was being used to analyze data?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poorly written</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>future recommendation should not be added in conclusion.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Introduction</td>
<td>References must be cited in the text in superscript digits at the end of sentence or paragraph before punctuation or full stop¹. In case of two or more references, separate the superscript digits by comma¹²,⁶. Moreover, if there are more references but in continuous numbers then use dash between superscript digits²⁻⁶.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Section</td>
<td>Edit Notes</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>------------</td>
<td></td>
</tr>
</tbody>
</table>
| 9 | Materials and Methods | When the study was carried out?
mention the grading of chemich either analytical grade was used or other
Please indicate both the manufacturer’s name and location (including city, state, and country) for all specialized equipments, kits and reagents used in the experiment
Which Statistical method was being used to analyze data? |
| 10 | keywords | highlighted keywords are not unique. Provide at least five key words. Key words should be unique and a concise summary of your paper’s content and should capture the most important aspects of your paper |
| 11 | References | References must be in English language
References are each must be numbered, ordered sequentially as they appear in the text
Some of the references are incomplete or not formatted properly. Such type of references are not acceptable. Go to Http://scialert.net and consult “references” from “guide to author” for having idea of reference categories and formatting
figures | Metion the unit in which it was measured
Remove this figure as it caused repetition of the data that is represented in table 1 |
| acknowledgement | Funding source with relevant grant number should be mentioned in the Acknowledgement. |
| conclusion | Poorly written
conclude about the findings so that a reader should have a good idea of what you have investigated and discovered.
future recommendation should be added separately |
| result | recheck it as lowest MIC value is 0 according to above table |

Don’t forget to make the changes

One of the biggest mistakes made by authors is to respond to all the comments, but forget to actually update the paper.
Don’t be that person: one way to make sure you remember is to always include line numbers in your changes. That way, you actually have to make the change first before including the line numbers in your response.
How to prepare the revised paper?

1. Before you start editing the document, make sure Tracking changes is enabled! In MS Word go to Review menu and enable ‘Track changes’.
2. You have to address every comment from both reviewers.
3. Mark your every change by adding a comment, excluding typos or similar minor editorial errors.

The comments should include a justification of the change (or lack of change!). In other words, answers to two questions:
- Why I made this change?
- What is the result?

If you decide to explain or justify why you believe your change (or lack of it) adds to the paper, always make sure to clearly indicate parts of paper you refer to (e.g. I mentioned this fact already in the Introduction, p. 1 paragraph 2. I believe bringing up this information there clarifies the issue from the very beginning).

Don’t add comments with questions. Bear in mind that:
- Our editors won’t answer them
- There will be only two stages of corrections – after major and minor review. There is no space for discussions with the reviewers.

If you remove something, don’t mark it like this. Instead, mark the whole paragraph by adding a comment with explanations of what you did and how it helps to improve the paper.

Summary: Track changes + put a comment with justification on every change you make.

b. Cover letter

It is a good academic practice to attach a cover letter to submissions of new and revised papers to journals. Cover letter sent with the paper after major review usually includes:

- Courteous thanks to the editor, etc.
- General confirmation on carrying out all minor editorial corrections (typos etc.)
- Confirmation of implementing the requested changes. Explanations on general character of changes. You may mention 1-3 fundamental changes you made and explain how you dealt with it.
- A list of tasks given by the reviewer with precise indication where in the document you included the changes.
- Other comments those are important to the editor.

Antimicrobial Profile of *Premna pubescens* Blume and *Centella asiatica* Extracts Against Bacteria and Fungi Pathogens

Martina Restuati, DikySetyaDiningrat

Biology Department of Mathematics and Natural Sciences Faculty, Medan State University, North Sumatera Indonesia.

corresponding author[U1]

Running title[U2]

Author contribution[U3]
Conflict of interest

Significance statement

Abstract

Background and Objective: North Sumatera Indonesia has a rich heritage of knowledge on plant based drugs both for use in preventive and curative medicine. Premna pubescens Blume (Buasbuas) has been used to increase the body immunity and endurance. Centella asiatica (Pegagan) used for medicinal purposes. Native to China, India and Indonesia recently have had interest in herb for its possible health benefits. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera medicinal plants P. pubescens and C. asiatica against the important pathogens. To investigate in vitro antimicrobial activity of aerial parts of P. pubescens and C. asiatica, that popularly used as folk medicines. Materials and Methods: The organic solvent plant extracts are tested on the various microorganisms including bacteria and fungi using agar diffusion technique. Results: The length of the inhibition zone was measured in millimeters from the edge of the well to the inhibition zone. P. pubescens showed significant to moderate activity against (14 mm) Pseudomonas marginalis and (21 mm) Streptococcus mutans with 100 mg/ml DMSO plant drug concentration. The results of (MICs) values are lowest at 66 and highest at 152 mg/ml for P. pubescens whereas 0 to 155 mg/ml for C. asiatica. Conclusion: The extracts were assessed to validate the potential activity of the medicinal plants against microbes. These studies were conducted to separate the individual components of P. pubescens and C. asiatica using column chromatography to develop alternative synthetic agents. However, it is necessary to determine the toxicity of the active constituents, their side effects and pharmacokinetic properties.

Keywords: Premna pubescens- Blume, Centella asiatica, antimicrobial, Minimum inhibitory concentration (MIC), Inhibition zone

INTRODUCTION

The number of medicinal plants is nearly 20,000, this data was according to a study conducted by the World Health Organization (WHO) based on publications on pharmacopoeias and medicinal plants in 91 countries (Rios & Recio, 2005). Nearly 6-7 thousand species of medicinal plants out of about 17-18 thousand flowering plants are known to be in use in folk and officially recognized systems of medicine in Indonesia, i.e., North Sumatra, Borneo, Celebes and Papua (Roosita et al., 2008).

North Sumatera Indonesia has a rich heritage of knowledge on plant based drugs both for use in preventive and curative medicine (Khairiah et al., 2017). Since ancient civilization, the
various parts of different plants were used to eliminate pain, control suffering and counteract disease. Plants generally produce many secondary metabolites which constitute an important source of microbicides, pesticides and many pharmaceutical drugs (Suswardany et al., 2017). It has also been widely observed and accepted that the medicinal value of plants lies in the bioactive phytocomponents present in the plants (Diningrat et al., 2015a; Restuati et al., 2016). Much work has been done on ethnomedicinal plants in North Sumatera Indonesia (Roosita et al., 2008; Khairiah et al., 2017; Diningrat et al., 2015b; Restuati et al., 2016). Medicinal plants represent a rich source of antimicrobial agents (Restuati et al., 2016; Johnson et al., 2010; Koochak et al., 2010). Because of the side effects and the resistance that pathogenic microorganisms build against antibiotics, many scientists have recently paid attention to extracts and biologically active compounds isolated from plant species used in herbal medicines (Perwitasari et al., 2016; Manaf et al., 2017).

Premna pubescens. Blume (Family Lamiaceae) is a shrub or tree up to 7-10 m height. It is known by various names like bebuas and buasuas in Indonesia (Leeratiwong et al., 2016). In the traditional North Sumatera Indonesian medicinal system, it has been used to increase the body endurance, treat the unwell or catching a cold, help for blood coagulation and overcome for warm infection in children, help to increase breast milk (Khotimah & Muhtadi, 2017; Wibowo & Harlia, 2016), and also increase appetite (Hidayat, 2015). Compounds derived from the plant have been found to have alkaloid, flavonoid, saponin, steroid, and fenolik (Diningrat et al., 2015a; Restuati et al., 2016). Antimicrobial activity of Premna pubescens. Blume was previously screened by (Restuati et al., 2016).

Centella asiatica (Family Mackinlayaceae) common names include Pegagan, Asiatic Pennywort, North Sumatera Indonesian Pennywort, Luei Gong Gen, Takip, kohol, Antanan,
Pegagan, Pegaga, vallaarai Kula kud, Bai Bua Bok and Brahmi. In North Sumatera Indonesia is well known as “Pegagan” it is used to improve the mental ability (Dogra et al., 2016; Jayaprakash & Nagarajan, 2016). Antibacterial activity of C. asiatica was previously screened by (Lin et al., 2017). The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera Indonesian medicinal plants P. pubescens and C. asiatica against the important pathogens. In this paper the results of such studies are reported in order to orient future investigations towards the finding of potent, less toxic to human health and safe antimicrobial agents from natural sources.

MATERIALS AND METHODS

Plant materials and extraction: The whole plants of P. pubescens and C. asiatica were collected from Medan State University campus plant collections aged 5-7 years for P. pubescens and 5-7 weeks for C. asiatica in Medan, North Sumatra, Indonesia. The botanical identification of the collected materials was conducted in herbarium of bogor botanical garden. The samples were separated and oven dried at 28°C room for 1 week. The samples were grounded into powder form using the grinder. Extraction using Soxhlet apparatus with 95%(v/v) Methanol as solvent for 12 h was performed. The resultant extraction was frozen and dried for 24°C/48 h. Yield of Methanol extracts: 30% (Villalobos et al., 2016).

Test microorganisms: Microbial strains of clinical, plant and aquatic origin i.e. Asperigellus niger, Pencillium expansum, Fusarium oxysporum, Xanthomonas compestries, Lactobacillus acidophilus, Pseudomonas marginalis, Pseudomonas syringae, Pseudomonas aeruginosa, Streptococcus mutans, Streptococcus salivarius and Staphylococcus aureus including both fungi and bacteria were procured from Microbial Type Culture Collection (MTCC) Biology Department Medan State University. Active cultures were generated by
inoculating a loopful of culture in separate 100 mL nutrient/potato dextrose broths and incubating on a shaker at 37°C overnight. The cells were harvested by centrifuging at 4000 rpm for 5 min, washed with normal saline, spun at 4000 rpm for 5 min again and diluted in normal saline to obtain 5×10^5 cfu/mL.

Determination of antimicrobial activity: The crude extracts of the different plant parts of different species were subjected to antimicrobial assay using the agar well diffusion method (Balouiri et al., 2016). About 20 ml of nutrient agar was dispensed into sterile universal bottles. Then inoculated with 0.2 ml of cultures mixed gently and poured into sterile petri dishes. After setting a number 3-cup borer (6 mm diameter) was properly sterilized by flaming and used to make three to five uniform cups/wells in each petri dish. A drop of molten nutrient agar was used to seal the base of each cup. The cups/wells were filled with 50μl of the extract concentrations of 100, 300 and 500 mg/ml DMSO and allow diffusion for 45 minutes. The solvents used to reconstitute the extracts were similarly analyzed. The plates were incubated at 37°C for 24 hours for bacteria. The above procedure is allowed for fungal assays, except the media potato dextrose agar instead of nutrient agar and incubates at 25°C for 48 hours. The zones of inhibition were measured with antibiotic zone scale in mm and the experiment was carried out in duplicates.

RESULTS

In the study of methanolic extract exhibited different degree of growth inhibition against the tested bacterial and fungal strains. According to Fig. 1a, 2 and Table 1, methanolic extracts of *P. pubescens* and *C. asatica* exhibited considerable antimicrobial activity against tested microbial strains as shown in table 1 and figure 1a, b. *Premnapubescens* showed significant to moderate activity against *P. Marginalis* and *S. mutans* with 100 mg/ml DMSO
Plant drug concentration. *Centella asiatica* is significant against *P. syringae* and moderate against other pathogens *F. oxysporum*, *L. acidophilus*, *S. salivarius*, and *S. aureus* with 100 mg/ml DMSO.

Table 1. Antimicrobial activity of methanolic extracts *Premna pubescens* Blume and *Centella asiatica*

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Premna pubescens Blume</th>
<th>Centella asiatica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Penicillium expansum</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Bacteria (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus acidophilus</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Streptococcus salivarius</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Bacteria (-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas marginalis</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Pseudomonas syringae</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Xanthomonas compestries</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

(0) Value indicates no activity. Volume per well: 50μl, Borer size used: 6mm used Plant Methanolic extract concentrations (A = 100, B = 300, and C = 500 mg/ml DMSO ml) MIC-Minimum inhibitory concentration.
Fig. 1a. Antimicrobial activity of methanol extracts *Premna pubescens* Blume

Fig. 21b. Antimicrobial activity of methanol extracts *C. asiatica*
The results of MICs values are lowest at 66\[U19\] and highest at 163\[U19\] mg/ml for *P. pubescens* whereas 0.155 mg/ml for *C. asatica*. The variation of antimicrobial activity of our these extracts might be due to the distribution of antimicrobial substances, which is varied from fraction to fraction of the crude extract. No inhibitions were observed with *P. pubescens* on *P. expansum* and *C. asatica* on *P. aeruginosa* and *S. mutans*.

DISCUSSION

These extracts are harmless and nonphytotoxic; it has been proved that extracts have inhibitory effects on germination and on the viability of fungal spores as well. Both plant extracts showed moderate to good activity against *A. niger* as it is a saprophyte in soil causing black mould of onion, garlic and shallot, stem root of Dracaena, root stalk rot of Sansevieria, and boll rot of cotton; spoilage of cashew kernels, dates, figs, vanilla pods and dried prune. The effectiveness of the active compounds in plant extracts causes the production of growth inhibition zones that appear as clear are as surrounding the wells. However, plant extract was unable to exhibit antibacterial activity against tested bacterial strains. These bacterial strains may have some kinds of resistance mechanisms e.g. enzymatic inactivation, target sites modification and decrease of intracellular drug accumulation (Santajit & Indrawattana, 2016) or the concentration of the compound used may not be sufficient.

The adverse effects of *P. pubescens* consumption are reported to cause blisters, lesions and eruptions when taken by patients for the treatment of joint pains and gastrointestinal problems. Due to its toxicity, the latex extracted from the stem has traditionally been used to make poison arrows (Khairiah et al., 2017). The latex is highly toxic to human eyes and produces sudden painless dimness of vision with photophobia (Micheloud et al., 2017). Several phytochemicals are identified in different parts. *P. pubescens* flowers contain terpenes, multiflorenol, and cyclisadol (Tan et al., 2017). The latex contains caoutchouc, calotropin, calotoxin, calactin,
uscharin, trypsin, voruscharin, uzarigenin, syriogenin and proceroside (Bezerra et al., 2017). Chemical constituents of *P. pubescens* flowers are lupeol, uscharin, proceroside, proceragenin (cardenolide), syriogenin, taraxast-20(30)-en-3-(4-methyl-3-pentenoate), 3-thiazoline cardenolide, gigantin, giganteol, isogiganteol, uscharidin, uzarigenin voruscharin a, caltropeol, 3-epimoretenol, a-lactuceryl acetate and alactuceryl isovalerate (Wen et al., 2017). Root bark of *P. pubescens* contains triterpenes. A new norditerpenyl ester, named calotropepenyl ester, and two unknown pentacyclic triterpinoids, namely calotropursenylacetate and calotropfriedelenylacetate, akundarolisovalerate, mundarol isovalerate and quercetin, 3-rutinoside (Wen et al., 2017). The principal active medicinals are asclepin and mudarin (Lam et al., 2016).

No inhibition was observed with controls, which proves that solvents could not act as antimicrobial agents. In almost all tests, crude methanolic extracts showed better inhibition against all the tested bacterial and fungal strains, indicating that active ingredients in plant materials could be extracted into methanol. However, the highest antibacterial activity of *P. pubescens* was observed due to the presence of secondary metabolites such as alkaloids, flavonoids and steroids against *S. aureus*. *Pseudomonasaeruginosa* are widespread in soil, water and sewage can be considered as an indication of their involvement in the natural process of mineralization of organic matter. It has long been a troublesome cause of secondary infections of wound, especially burns, giving rise to blue green pus. It produces meningitis, when introduced by lumbar puncture and urinary tract infection when introduced by catheters and instruments or irrigating solutions (Miyazaki et al., 2016). *S. aureus* occur harmlessly as a normal flora of the skin and mucous membrane and it is one of the commonest bacterial pathogens encountered in the community causing severe food
poisoning or minor skin infections to severe lifethreatening infections (Brooks et al., 2004). *C. asiatica* methanol extract having strong inhibition activity against *P. aeruginosa* and *S. aureus* was previously reported by (Thangavel Arumugam et al. 2011).

CONCLUSION

Premna pubescens and Centella asiatica extracts showed antimicrobial activity against tested pathogens including antibiotic resistant strains. Further studies are being carried out in order to separate the individual components in plant extractsof *P. pubescens* and *C. asiatica* using column chromatography to develop biopesticides as alternatives to synthetic agents. However, it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.

ACKNOWLEDGEMENTS

We are thankful for constant encouragement and support from Biology Department, Mathematics and Natural Sciences, BOPTN Grants Funding Medan State University, Post-doctoral grants from the ministry of research, technology and higher education of Indonesia.

REFERENCES

Your paper has undergone first reviews. You received two reviews from two independent reviewers who don’t know your identity. Their remarks are impartial, focused on the merit and academic quality of your paper. They are renowned professionals with huge experience in publishing and reviewing papers in your field of study. You may disagree with some of their remarks but keep in mind that the reviewers are experts in your chosen topic and they will help you improve your paper. It is normal even for experienced conservators and researchers to receive huge numbers of remarks from reviewers.

The authors are obliged by the publishing agreement to carry out all the changes advised by reviewers within a deadline set by the editor. Refusal or not providing the amended document on time will result in rejecting your paper for publication.

Overall comments:

Author is advised to re-write the full text carefully with the help of English Language Expert and correct the spelling, grammar, punctuation and vocabulary usage errors. Provide English Language Editing certificate

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Part of the Manuscript</th>
<th>Reviewer’s Comments</th>
<th>Response of Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Corresponding Author</td>
<td>Who is the corresponding author? One author must be designated as “Corresponding Author”. Name with contact details (E-mail address, full postal address and Telephone number) of corresponding author should be mentioned here clearly.</td>
<td>Diky Setya Diningrat, dikysd@unimed.ac.id Jl. Willem Iskandar Pasar V Medan Estate, Medan, North Sumatra, Indonesia, +62 81361362400</td>
</tr>
<tr>
<td>2</td>
<td>Running Title</td>
<td>Provide the running title of the article as it is necessary according to the format of the journal.</td>
<td>It will be repaired based on the format journal</td>
</tr>
<tr>
<td>3</td>
<td>liveDNA</td>
<td>From January 1, 2017, it’s compulsory for all corresponding authors submitting papers to any Science Alert Journal to provide LiveDNA iDs (livedna.net) before final publication of their articles. With this standard identifier, you can create a</td>
<td>I will submit to LiveDNA</td>
</tr>
</tbody>
</table>
Profile of your research activities to distinguish yourself from other researchers with similar names, and make it easier for your colleagues to find your publications. To get LiveDNA, please go to the link: http://livedna.net/form.php

4. **Conflict of interest**
 - A statement on conflicts of interest should be included in the manuscript. Either mention: 'none declared', or specify the authors' financial or other interests which should be known to the readers.

5. **Author’s contribution**
 - There is a series of questions that will enable you to state the contributions of each author. Each author listed on the manuscript should have a real and concrete contribution to the submission. Every single person who contributed to the manuscript should be listed. More information about authorship can be collected from Editorial Policies.

6. **Significance statement**
 - A statement about the significance of this research work should be included in the manuscript. The significance statement should provide the novelty aspect and significance of this research work with respect to the existing literature and more generally to the society. It should be a short summary which describe what this paper adds to and what was already known.

 Start this statement with the following words: This study discover the ------------------ that can be beneficial for ……………

 And the last sentence of this statement could be such as:

 This study will help the researcher to uncover the critical areas of -------------- that many researchers were not able to explore. Thus a new theory on -------------- may be arrived at.

 A Model Significance Statement:
 - This study discovers the possible synergistic effect of vitamin E, calcium, and vitamin D combination that can be beneficial for osteoporosis-induced ovariec-tomized rats. This study will help the researcher to uncover the critical area of postmenopausal bone loss that many researchers were not able to explore. Thus, a new theory on these micronutrients combination, and possibly other combinations, may be arrived at.

7. **Abstract**
 - Which Statistical method was being used to analyze data?

 Poorly written
 - future recommendation should not be added in conclusion.
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Introduction</td>
<td>References must be cited in the text in superscript digits at the end of sentence or paragraph before punctuation or full stop(^1). In case of two or more references, separate the superscript digits by comma(^1,2,6). Moreover, if there are more references but in continuous numbers then use dash between superscript digits(^2-6).</td>
</tr>
<tr>
<td>9</td>
<td>Materials and Methods</td>
<td>When the study was carried out? mention the grading of chemich either analytical grade was used or other. Please indicate both the manufacturer’s name and location (including city, state, and country) for all specialized equipments, kits and reagents used in the experiment. Which Statistical method was being used to analyze data?</td>
</tr>
<tr>
<td>10</td>
<td>Keywords</td>
<td>highlighted keywords are not unique. Provide at least five key words. Key words should be unique and a concise summary of your paper’s content and should capture the most important aspects of your paper.</td>
</tr>
<tr>
<td>11</td>
<td>References</td>
<td>References must be in English language. References are each must be numbered, ordered sequentially as they appear in the text.</td>
</tr>
</tbody>
</table>
Some of the references are incomplete or not formatted properly. Such type of references are not acceptable. Go to http://scialert.net and consult “references” from “guide to author” for having idea of reference categories and formatting.

figures	Mention the unit in which it was measured. Remove this figure as it caused repetition of the data that is represented in table 1.
acknowledgement	Funding source with relevant grant number should be mentioned in the Acknowledgement.
conclusion	Poorly written. Conclude about the findings so that a reader should have a good idea of what you have investigated and discovered. Future recommendation should be added separately.
result	Recheck it as lowest MIC value is 0 according to above table. 0 is not the lowest MIC value because 0 has no bioactive compound in killing microbes. On the contrast, 66 MIC is the lowest one.

Don't forget to make the changes

One of the biggest mistakes made by authors is to respond to all the comments, but forget to actually update the paper. Don't be that person: one way to make sure you remember is to always include line numbers in your changes. That way, you actually have to make the change first before including the line numbers in your response.

How to prepare the revised paper?

1. Before you start editing the document, make sure Tracking changes is enabled! In MS Word go to Review menu and enable ‘Track changes’.
2. You have to address every comment from both reviewers.
3. Mark your every change by adding a comment, excluding typos or similar minor editorial errors.

The comments should include a justification of the change (or lack of change!). In other words, answers to two questions:
- Why I made this change?
- What is the result?

If you decide to explain or justify why you believe your change (or lack of it) adds to the paper, always make sure to clearly indicate parts of paper you refer to (e.g. I mentioned this fact already in the Introduction, p. 1 paragraph 2. I believe bringing up this information there clarifies the issue from the very beginning).
Don’t add comments with questions. Bear in mind that:

- Our editors won’t answer them
- There will be only two stages of corrections – after major and minor review. There is no space for discussions with the reviewers.

If you remove something, don’t mark it like this. Instead, mark the whole paragraph by adding a comment with explanations of what you did and how it helps to improve the paper.

Summary: Track changes + put a comment with justification on every change you make

b. Cover letter
It is a good academic practice to attach a cover letter to submissions of new and revised papers to journals. Cover letter sent with the paper after major review usually includes:

- Courteous thanks to the editor, etc.
- General confirmation on carrying out all minor editorial corrections (typos etc.)
- Confirmation of implementing the requested changes. Explanations on general character of changes. You may mention 1-3 fundamental changes you made and explain how you dealt with it.
- A list of tasks given by the reviewer with precise indication where in the document you included the changes.
- Other comments those are important to the editor.

Antimicrobial Profile of *Premna pubescens*-Blume and *Centella asiatica* Extracts Against Bacteria and Fungi Pathogens

1Martina Restuati, 2DikySetyaDiningrat

1*Biology Department of Mathematics and Natural Sciences Faculty, Medan State University, North Sumatera Indonesia.

running title

Author contribution

Conflict of interest

Significance statement

Abstract

Background and Objective: North Sumatera Indonesia has a rich heritage of knowledge on plant based drugs both for use in preventive and curative medicine. *Premna pubescens*-Blume (Buasbuas) has been used to increase the body immunity and endurance. *Centella asiatica* (Pegagan) used for medicinal purposes. Native to China, India and Indonesia recently have had interest in herb for its possible health benefits. The aim of the study was to investigate *in vitro* antimicrobial activity of North Sumatera medicinal plants *P. pubescens* and *C. asatica* against the important pathogens. To investigate *in vitro* antimicrobial activity of aerial parts of *P. pubescens* and *C. asatica*, that popularly used as folk medicines.

Materials and Methods: The organic solvent plant extracts are tested on the various microorganisms...
including bacteria and fungi using agardiffusion technique. Results: The length of the inhibition zone was measured in millimeters from the edge of the well to the inhibition zone. *P. pubescens* showed significant to moderate activity against (14 mm) *Pseudomonas marginalis* and (21 mm) *Streptococcus mutans* with 100 mg/ml DMSO plant drug concentration. The results of (MICs) values are lowest at 66 and highest at 152 mg/ml for *P. pubescens* whereas 0 to 155 mg/ml for *C. asiatica*. Conclusion: The extracts were assessed to validate the potential activity of the medicinal plants against microbes. These studies were conducted to separate the individual components of *P. pubescens* and *C. asiatica* using column chromatography to develop alternative synthetic agents. However, it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.

Keywords: *Premna pubescens*, Blume, *Centella asiatica*, antimicrobial, Minimum inhibitory concentration (MIC), inhibition zone

INTRODUCTION

The number of medicinal plants is nearly 20,000, this data was according to a study conducted by the World Health Organization (WHO) based on publications on pharmacopoeias and medicinal plants in 91 countries (Rios & Recio, 2005). Nearly 6-7 thousand species of medicinal plants out of about 17-18 thousand flowering plants are known to be in use in folk and officially recognized systems of medicine in Indonesia, i.e., North Sumatra, Borneo, Celebes and Papua (Roosita et al., 2008).

North Sumatera Indonesia has a rich heritage of knowledge on plant based drugs both for use in preventive and curative medicine (Khairiah et al., 2017). Since ancient civilization, the various parts of different plants were used to eliminate pain, control suffering and counteract disease. Plants generally produce many secondary metabolites which constitute an important source of microbicides, pesticides and many pharmaceutical drugs (Suswardany et al., 2017). It has also been widely observed and accepted that the medicinal value of plants lies in the bioactive phytocomponents present in the plants (Diningrat et al., 2015a; Restuti et al, 2016). Much work has been done on ethnomedicinal plants in North Sumatera Indonesia (Roosita et al., 2008; Khairiah et al., 2017; Diningrat et al., 2015b; Restuti et al, 2016). Medicinal plants
represent a rich source of antimicrobial agents (Restuati et al., 2016; Johnson et al., 2010; Koochak et al., 2010). Because of the side effects and the resistance that pathogenic microorganisms build against antibiotics, many scientists have recently paid attention to extracts and biologically active compounds isolated from plant species used in herbal medicines (Perwitasari et al., 2016; Manaf et al., 2017).

Premna pubescens Blume (Family Lamiaceae) is a shrub or tree up to 7-10 m height. It is known by various names like bebuas and buasbuas in Indonesia (Leeratiwong et al., 2016). In the traditional North Sumatera Indonesian medicinal system, it has been used to increase the body endurance, treat the unwell or catching a cold, help for blood coagulation and overcome for warm infection in children, help to increase breast milk (Khotimah & Muhtadi, 2017; Wibowo & Harlia, 2016), and also increase appetite (Hidayat, 2015). Compounds derived from the plant have been found to have alkaloid, flavonoid, saponin, steroid, dan fenolik (Diningrat et al., 2015a; Restuati et al., 2016). Antimicrobial activity of *Premna pubescens* Blume was previously screened by (Restuati et al., 2016).

Centella asiatica (Family Mackinlayaceae) common names include Pegagan, Asiatic Pennywort, North Sumatera Indonesian Pennywort, Luei Gong Gen, Takip, kohol, Antanan, Pegagan, Pegaga, vallaarai Kula kud, Bai Bua Bok and Brahmi. In North Sumatera Indonesia is well known as “Pegagan” it is used to improve the mental ability (Dogra et al., 2016; Jayaprakash & Nagarajan, 2016). Antibacterial activity of *C. asiatica* was previously screened by (Lin et al., 2017). The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera Indonesian medicinal plants *P. pubescens* and *C. asiatica* against the important pathogens. In this paper the results of such studies are reported in order to
orient future investigations towards the finding of potent, less toxic to human health and safe antimicrobial agents from natural sources.

MATERIALS AND METHODS

Plant materials and extraction: The whole plants of *P. Pubescens* and *C. asiatica* were collected from Medan State University campus plant collections aged 5-7 years for *P. pubescens* and 5-7 weeks for *C. asiatica* in Medan, North Sumatra, Indonesia. The botanical identification of the collected materials was conducted in herbarium of bogor botanical garden. The samples were separated and oven dried at 28°C room for 1 week. The samples were grounded into powder form using the grinder. Extraction using Soxhlet apparatus with 95% (v/v) Methanol as solvent for 12 h was performed. The resultant extraction was frozen and dried for 24°C/48 h. Yield of Methanol extracts: 30% (Villalobos et al., 2016).

Test microorganisms: Microbial strains of clinical, plant and aquatic origin i.e. *Asperigellus niger*, *Pencillium expansum*, *Fusarium oxysporum*, *Xanthomonas compestries*, *Lactobacillus acidophilus*, *Pseudomonas marginalis*, *Pseudomonas syringae*, *Pseudomonas aeruginosa*, *Streptococcus mutans*, *Streptococcus salivarious* and *Staphylococcus aureus* including both fungi and bacteria were procured from Microbial Type Culture Collection (MTCC) Biology Department Medan State University. Active cultures were generated by inoculating a loopful of culture in separate 100 mL nutrient/potato dextrose broths and incubating on a shaker at 37°C overnight. The cells were harvested by centrifuging at 4000 rpm for 5 min, washed with normal saline, spun at 4000 rpm for 5 min again and diluted in normal saline to obtain 5 x 10^5 cfu/mL.

Determination of antimicrobial activity: The crude extracts of the different plant parts of different species were subjected to antimicrobial assay using the agar well diffusion
method (Balouiri et al., 2016). About 20 ml of nutrient agar was dispensed into sterile universal bottles. Then inoculated with 0.2 ml of cultures mixed gently and poured into sterile petri dishes. After setting a number 3-cup borer (6 mm diameter) was properly sterilized by flaming and used to make three to five uniform cups/wells in each petri dish. A drop of molten nutrient agar was used to seal the base of each cup. The cups/wells were filled with 50μl of the extract concentrations of 100, 300 and 500 mg/ml DMSO and allow diffusion for 45 minutes. The solvents used to reconstitute the extracts were similarly analyzed. The plates were incubated at 37°C for 24 hours for bacteria. The above procedure is allowed for fungal assays, except the media potato dextrose agar instead of nutrient agar and incubates at 25°C for 48 hours. The zones of inhibition were measured with antibiotic zone scale in mm and the experiment was carried out in duplicates.

Statistical analysis

RESULTS

In the study of methanolic extract exhibited different degree of growth inhibition against the tested bacterial and fungal strains. According to Fig. 1a, 2 band Table 1, methanolic extracts of P. pubescens and C. asiatica exhibited considerable antimicrobial activity against tested microbial strains as shown in table 1 and figure 1a, b. Premnapubescens showed significant to moderate activity against P. Marginalis and S. mutans with 100 mg/ml DMSO plant drug concentration. Centellaasiatica significant against P. syringae and moderate against other pathogens F. oxysporum, L. acidophilus, S. Salivarius, salivarius and S. Aureus aureus with 100 mg/ml DMSO.

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Premna pubescens- Blume</th>
<th>Centella asiatica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Fungi</td>
<td>Aspergillus</td>
<td>10</td>
</tr>
<tr>
<td>Pathogen</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Penicillium expansum</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Lactobacillus acidophilus</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Staphylococcus salivarius</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Pseudomonas marginalis</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Pseudomonas syringae</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Xanthomonas competes</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

(0) Value indicates no activity. Volume per well: 50μl, Borer size used: 6mm used Plant Methanolic extract concentrations (A =100, B=300, and C=500 mg/ DMSO ml) MIC-Minimum inhibitory concentration

![Fig.1](image_url)

Fig.1a. Antimicrobial activity of methanol extracts *Premna pubescens* Blume
The results of MICs values are lowest at \(\text{66 mg/ml} \) and highest at \(\text{1532 mg/ml} \) for \(P. \text{pubescens} \) whereas \(\text{0.155 mg/ml} \) for \(C. \text{asiatica} \). The variation of antimicrobial activity of our these extracts might be due to the distribution of antimicrobial substances, which is varied from fraction to fraction of the crude extract. No inhibitions were observed with \(P. \text{pubescens} \) on \(P. \text{expansum} \) and \(C. \text{asiatica} \) on \(P. \text{aeruginosa} \) and \(S. \text{mutans} \).

DISCUSSION

These extracts are harmless and nonphytotoxic; it has been proved that extracts have inhibitory effects on germination and on the viability of fungal spores as well. Both plant extracts showed moderate to good activity against \(A. \text{niger} \) as it is a saprophyte in soil causing black mould of onion, garlic and shallot, stem root of Dracaena, root stalk rot of Sansevieria, and boll rot of cotton; spoilage of cashew kernels, dates, figs, vanilla pods and dried prune.

The effectiveness of the active compounds in plant extracts causes the production of
growth inhibition zones that appear as clear areas surrounding the wells. However, plant extract was unable to exhibit antibacterial activity against tested bacterial strains. These bacterial strains may have some kinds of resistance mechanisms e.g., enzymatic inactivation, target sites modification and decrease of intracellular drug accumulation (Santajit & Indrawattana, 2016) or the concentration of the compound used may not be sufficient.

The adverse effects of *P. pubescens* consumption are reported to cause blisters, lesions and eruptions when taken by patients for the treatment of joint pains and gastrointestinal problems. Due to its toxicity, the latex extracted from the stem has traditionally been used to make poison arrows (Khairiah et al., 2017). The latex is highly toxic to human eyes and produces sudden painless dimness of vision with photophobia (Micheloud et al., 2017). Several phytochemicals are identified in different parts. *P. pubescens* flowers contain terpenes, multiflorenol, and cyclisadol (Tan et al., 2017). The latex contains caoutchouc, calotropin, calotoxin, calactin, uscharin, trypsin, voruscharin, uzarigenin, syriogenin and proceroside (Bezerra et al., 2017). Chemical constituents of *P. pubescens* flowers are lupeol, uscharin, proceroside, proceragenin (cardenolide), syriogenin, taraxast-20(30)-en-3-(4-methyl-3-pentenoate), 3-thiazoline cardenolide, gigantin, giganteol, isogiganteol, uscharidin, uzarigenin voruscharin a, calotropeol, 3-epimoretanol, a-lactuceryl acetate and alactuceryl isovalerate (Wen et al., 2017). Root bark of *P. pubescens* contains triterpenes, a new norditerpenyl ester, named calotropterpenyl ester, and two unknown pentacyclic triterpinoids, namely calotropursenylacetate and calotropfriedelenylacetate, akundarolisovalerate, mundarol isovalerate and quercetin, 3-rutinoside (Wen et al., 2017). The principal active medicinals are asclepin and mudarin (Lam et al., 2016).
No inhibition was observed with controls, which proves that solvents could not act as antimicrobial agents. In almost all tests, crude methanolic extracts showed better inhibition against all the tested bacterial and fungal strains, indicating that active ingredients in plant materials could be extracted into methanol. However, the highest antibacterial activity of *P. pubescens* was observed due to the presence of secondary metabolites such as alkaloids, flavonoids and steroids against *S. aureus*. *Pseudomonas aeruginosa* is widespread in soil, water and sewage can be considered as an indication of their involvement in the natural process of mineralization of organic matter. It has long been a troublesome cause of secondary infections of wound, especially burns, giving rise to blue green pus. It produces meningitis, when introduced by lumber puncture and urinary tract infection when introduced by catheters and instruments or irrigating solutions (Miyazaki et al., 2016). *S. aureus* occur harmlessly as a normal flora of the skin and mucous membrane and it is one of the commonest bacterial pathogens encountered in the community causing severe food poisoning or minor skin infections to severe life-threatening infections (Brooks et al., 2004). *C. asiatica* methanol extract having strong inhibition activity against *P. aeruginosa* and *S. aureus* was previously reported by (Thangavel Arumugam et al. 2011).

CONCLUSION

Premna pubescens and *Centella asiatica* extracts showed antimicrobial activity against tested pathogens including antibiotic resistant strains. Further studies are being carried out in order to separate the individual components in plant extracts of *P. pubescens* and *C. asiatica* using column chromatography to develop biopesticides as alternative to synthetic agents. However, it is necessary to determine the toxicity of the active constituents, their side effects and pharma-co-kinetic properties.
ACKNOWLEDGEMENTS

We are thankful for constant encouragement and support from Biology Department, Mathematics and Natural Sciences, BOPTN Grants Funding Medan State University, Post-doctoral grants from the ministry of research, technology and higher education of Indonesia.

REFERENCES

Your paper has undergone first reviews. You received two reviews from two independent reviewers who don’t know your identity. Their remarks are impartial, focused on the merit and academic quality of your paper. They are renowned professionals with huge experience in publishing and reviewing papers in your field of study. You may disagree with some of their remarks but keep in mind that the reviewers are experts in your chosen topic and they will help you improve your paper. It is normal even for experienced conservators and researchers to receive huge numbers of remarks from reviewers.

The authors are obliged by the publishing agreement to carry out all the changes advised by reviewers within a deadline set by the editor. Refusal or not providing the amended document on time will result in rejecting your paper for publication.

Overall comments:
Author is advised to re-write the full text carefully with the help of English Language Expert and correct the spelling, grammar, punctuation and vocabulary usage errors. Provide English Language Editing certificate.

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Part of the Manuscript</th>
<th>Reviewer’s Comments</th>
<th>Response of Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Corresponding Author</td>
<td>Who is the corresponding author? One author must be designated as “Corresponding Author”. Name with contact details (E-mail address, full postal address and Telephone number) of corresponding author should be mentioned here clearly</td>
<td>Diky Setya Dinningrat, dikysd@unimed.ac.id Jl. Willem Iskandar Pasar V Medan Estate, Medan, North Sumatra, Indonesia, +62 81361362400</td>
</tr>
<tr>
<td>2</td>
<td>Running Title</td>
<td>Provide the running title of the article as it is necessary according to the format of the journal.</td>
<td>I will submit to LiveDNA</td>
</tr>
<tr>
<td>3</td>
<td>LiveDNA</td>
<td>From January 1, 2017, its compulsory for all corresponding authors submitting papers to any Science Alert Journal to provide LiveDNA iDs (livedna.net) before final publication of their articles. With this standard identifier, you can create a</td>
<td>I will submit to LiveDNA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Conflict of interest</td>
<td>A statement on conflicts of interest should be included in the manuscript. Either mention: ‘none declared’, or specify the authors’ financial or other interests which should be known to the readers. I will submit.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Author’s contribution</td>
<td>There is a series of questions that will enable you to state the contributions of each author. Each author listed on the manuscript should have a real and concrete contribution to the submission. Every single person who contributed to the manuscript should be listed. More information about authorship can be collected from Editorial Policies. I will submit.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Significance statement</td>
<td>A statement about the significance of this research work should be included in the manuscript. The significance statement should provide the novelty aspect and significance of this research work with respect to the existing literature and more generally to the society. It should be a short summary which describe what this paper adds to and what was already known. Start this statement with the following words: This study discover the __________ that can be beneficial for __________. And the last sentence of this statement could be such as: This study will help the researcher to uncover the critical areas of __________ that many researchers were not able to explore. Thus a new theory on __________ may be arrived at. A Model Significance Statement: This study discovers the possible synergistic effect of vitamin E, calcium, and vitamin D combination that can be beneficial for osteoporosis-induced ovariectomized rats. This study will help the researcher to uncover the critical area of postmenopausal bone loss that many researchers were not able to explore. Thus, a new theory on these micronutrients combination, and possibly other combinations, may be arrived at. I will submit.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Abstract</td>
<td>Which Statistical method was being used to analyze data? Poorly written future recommendation should not be added in conclusion. Statistical method used is ANAVZA (analysis of variant) using software of</td>
<td></td>
</tr>
</tbody>
</table>
SPSS 121
- Soxhlet used is the product of IWAKI
- Soxhlet extractor 100 ML
- Methanol used is methanol compound P.A., 99% sigma-adrich

8. **Introduction**

References must be cited in the text in superscript digits at the end of sentence or paragraph before punctuation or full stop. In case of two or more references, separate the superscript digits by comma. Moreover, if there are more references but in continuous numbers then use dash between superscript digits.

9. **Materials and Methods**

When the study was carried out?

- Mention the grading of chemich either analytical grade was used or other.

- Please indicate both the manufacturer’s name and location (including city, state, and country) for all specialized equipments, kits and reagents used in the experiment.

- Which Statistical method was being used to analyze data?

10. **Keywords**

Highlighted keywords are not unique. Provide at least five key words. Key words should be unique and a concise summary of your paper’s content and should capture the most important aspects of your paper.

11. **References**

References must be in English language

- References are each must be numbered, ordered sequentially as they appear in the text.
Don't forget to make the changes

One of the biggest mistakes made by authors is to respond to all the comments, but forget to actually update the paper. Don't be that person: one way to make sure you remember is to always include line numbers in your changes. That way, you actually have to make the change first before including the line numbers in your response.

How to prepare the revised paper?

1. Before you start editing the document, make sure Tracking changes is enabled! In MS Word go to Review menu and enable ‘Track changes’.
2. You have to address every comment from both reviewers.
3. Mark your every change by adding a comment, excluding typos or similar minor editorial errors.

The comments should include a justification of the change (or lack of change). In other words, answers to two questions:

- Why I made this change?
- What is the result?

If you decide to explain or justify why you believe your change (or lack of it) adds to the paper, always make sure to clearly indicate parts of paper you refer to (e.g. I mentioned this fact already in the Introduction, p. 1 paragraph 2. I believe bringing up this information there clarifies the issue from the very beginning).
Don’t add comments with questions. Bear in mind that:

- Our editors won’t answer them
- There will be only two stages of corrections – after major and minor review. There is no space for discussions with the reviewers.

If you remove something, don’t mark it like this. Instead, mark the whole paragraph by adding a comment with explanations of what you did and how it helps to improve the paper.

Summary: Track changes + put a comment with justification on every change you make

b. Cover letter
It is a good academic practice to attach a cover letter to submissions of new and revised papers to journals. Cover letter sent with the paper after major review usually includes:

- Courteous thanks to the editor, etc.
- General confirmation on carrying out all minor editorial corrections (typos etc.)
- Confirmation of implementing the requested changes. Explanations on general character of changes. You may mention 1-3 fundamental changes you made and explain how you dealt with it.
- A list of tasks given by the reviewer with precise indication where in the document you included the changes.
- Other comments those are important to the editor.

Antimicrobial Profile of *Premna pubescens* Blume and *Centella asiatica* Extracts Against Bacteria and Fungi Pathogens

Martina Restuati, DikySetyaDiningrat

Corresponding author

Background and Objective: North Sumatera Indonesia has a rich heritage of knowledge on plant based drugs both for use in preventive and curative medicine. *Premna pubescens* Blume (Buasbuas) has been used to increase the body immunity and endurance. *Centella asiatica* (Pegagan) used for medicinal purposes. Native to China, India and Indonesia recently have had interest in herb for its possible health benefits. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera medicinal plants *P. pubescens* and *C. asiatica* against the important pathogens. To investigate in vitro antimicrobial activity of aerial parts of *P. pubescens* and *C. asiatica*, that popularly used as folk medicines. Materials and Methods: The organic solvent plant extracts are tested on the various microorganisms
including bacteria and fungi using agar diffusion technique. **Results:** The length of the inhibition zone was measured in millimeters from the edge of the well to the inhibition zone. *P. pubescens* showed significant to moderate activity against (14 mm) *Pseudomonas marginalis* and (21 mm) *Streptococcus mutans* with 100 mg/ml DMSO plant drug concentration. The results of (MICs) values are lowest at 66 and highest at 152 mg/ml for *P. pubescens* whereas 0 to 155 mg/ml for *C. asiatica*. **Conclusion:** The extracts were assessed to validate the potential activity of the medicinal plants against microbes. These studies were conducted to separate the individual components of *P. pubescens* and *C. asiatica* using column chromatography to develop alternative synthetic agents. However, it is necessary to determine the toxicity of the active constituents, their side effects, and pharmacokinetic properties.

Keywords: *Premna pubescens*, Blume, *Centella asiatica*, antimicrobial, Minimum inhibitory concentration (MIC), inhibition zone

INTRODUCTION

The number of medicinal plants is nearly 20,000, this data was according to a study conducted by the World Health Organization (WHO) based on publications on pharmacopoeias and medicinal plants in 91 countries (Rios & Recio, 2005). Nearly 6-7 thousand species of medicinal plants out of about 17-18 thousand flowering plants are known to be in use in folk and officially recognized systems of medicine in Indonesia, i.e., North Sumatra, Borneo, Celebes and Papua (Roosita et al., 2008).

North Sumatera Indonesia has a rich heritage of knowledge on plant-based drugs both for use in preventive and curative medicine (Khairiah et al., 2017). Since ancient civilization, the various parts of different plants were used to eliminate pain, control suffering and counteract disease. Plants generally produce many secondary metabolites which constitute an important source of microbicides, pesticides, and many pharmaceutical drugs (Suswardany et al., 2017). It has also been widely observed and accepted that the medicinal value of plants lies in the bioactive phytocomponents present in the plants (Diningrat et al., 2015a; Restuati et al., 2016).

Much work has been done on ethnomedicinal plants in North Sumatera Indonesia (Roosita et al., 2008; Khairiah et al., 2017; Diningrat et al., 2015b; Restuati et al., 2016). Medicinal plants...
represent a rich source of antimicrobial agents (Restuati et al., 2016; Johnson et al., 2010; Koochak et al., 2010). Because of the side effects and the resistance that pathogenic microorganisms build against antibiotics, many scientists have recently paid attention to extracts and biologically active compounds isolated from plant species used in herbal medicines (Perwitasari et al., 2016; Manaf et al., 2017).

Premna pubescens Blume (Family Lamiaceae) is a shrub or tree up to 7-10 m height. It is known by various names like bebuas and buasbuas in Indonesia (Leeratiwong et al., 2016). In the traditional North Sumatera Indonesian medicinal system, it has been used to increase the body endurance, treat the unwell or catching a cold, help for blood coagulation and overcome for warm infection in children, help to increase breast milk (Khotimah & Muhtadi, 2017; (Wibowo & Harlia, 2016), and also increase appetite (Hidayat, 2015). Compounds derived from the plant have been found to have alkaloid, flavonoid, saponin, steroid, dan fenolik (Diningrat et al., 2015a; Restuati et al., 2016). Antimicrobial activity of *Premna pubescens* Blume was previously screened by (Restuati et al., 2016).

Centella asiatica (Family Mackinlayaceae) common names include Pegagan, Asiatic Pennywort, North Sumatera Indonesian Pennywort, Luei Gong Gen, Takip, kohol, Antanan, Pegagan, Pegaga, vallaarai Kula kud, Bai Bua Bok and Brahmi. In North Sumatera Indonesia is well known as “Pegagan” it is used to improve the mental ability (Dogra et al., 2016; Jayaprakash & Nagarajan, 2016). Antibacterial activity of *C. asiatica* was previously screened by (Lin et al., 2017). The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera Indonesian medicinal plants *P. pubescens* and *C. asiatica* against the important pathogens. In this paper the results of such studies are reported in order to
orient future investigations towards the finding of potent, less toxic to human health and safe antimicrobial agents from natural sources.

MATERIALS AND METHODS

Plant materials and extraction: The whole plants of *P. Pubescens* and *C. asiatica* were collected from Medan State University campus plant collections aged 5-7 years for *P. pubescens* and 5-7 weeks for *C. asiatica* in Medan, North Sumatra, Indonesia. The botanical identification of the collected materials was conducted in herbarium of bogor botanical garden. The samples were separated and oven dried at 28°C room for 1 week. The samples were grounded into powder form using the grinder. Extraction using Soxhlet apparatus with 95% (v/v) *Methanol* as solvent for 12 h was performed. The resultant extraction was frozen and dried for 24°C/48 h. Yield of Methanol extracts: 30% (Villalobos et al., 2016).

Test microorganisms: Microbial strains of clinical, plant and aquatic origin i.e. *Asperigillus niger*, *Pencillium expansum*, *Fusarium oxysporum*, *Xanthomonas campestris*, *Lactobacillus acidophilus*, *Pseudomonas marginalis*, *Pseudomonas syringae*, *Pseudomonas aeruginosa*, *Streptococcus mutans*, *Streplococcus salivarious* and *Staphylococcus aureus* including both fungi and bacteria were procured from Microbial Type Culture Collection (MTCC) Biology Department Medan State University. Active cultures were generated by inoculating a loopful of culture in separate 100 mL nutrient/potato dextrose broths and incubating on a shaker at 37°C overnight. The cells were harvested by centrifuging at 4000 rpm for 5 min, washed with normal saline, spun at 4000 rpm for 5 min again and diluted in normal saline to obtain 5 x 10⁵ cfu/mL.

Determination of antimicrobial activity: The crude extracts of the different plant parts of different species were subjected to antimicrobial assay using the agar well diffusion
method (Balouiri et al., 2016). About 20 ml of nutrient agar was dispensed into sterile universal bottles. Then inoculated with 0.2 ml of cultures mixed gently and poured into sterile petri dishes. After setting a number 3-cup borer (6 mm diameter) was properly sterilized by flaming and used to make three to five uniform cups/wells in each petri dish. A drop of molten nutrient agar was used to seal the base of each cup. The cups/wells were filled with 50μl of the extract concentrations of 100, 300 and 500 mg/ml DMSO and allow diffusion for 45 minutes. The solvents used to reconstitute the extracts were similarly analyzed. The plates were incubated at 37°C for 24 hours for bacteria. The above procedure is allowed for fungal assays, except the media potato dextrose agar instead of nutrient agar and incubates at 25°C for 48 hours. The zones of inhibition were measured with antibiotic zone scale in mm and the experiment was carried out in duplicates.

RESULTS

In the study of methanolic extract exhibited different degree of growth inhibition against the tested bacterial and fungal strains. According to Fig. 1a, 2 band Table 1, methanolic extracts of *P. pubescens* and *C. asatica* exhibited considerable antimicrobial activity against tested microbial strains as shown in table 1 and figure 1a, b. *Premnapubescens* showed significant to moderate activity against *P. Marginalis* and *S. mutans* with 100 mg/ml DMSO plant drug concentration. *Centellaasiatica* is significant against *P. syringae* and moderate against other pathogens *F. oxysporum*, *L. acidophilus*, *S. Salivarius* and *S. Aureaus* with 100 mg/ml DMSO.

Table 1. Antimicrobial activity of methanolic extracts Premna pubescens. Blume and Centella asiatica

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Premna pubescens. Blume</th>
<th>Centellaasiatica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Fungi</td>
<td>Aspergillus</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Penicillium expansum</td>
<td>Fusarium oxysporum</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Bacteria (+)</td>
<td>11 14 15 101 0 0 0 0</td>
<td>12 13 15 105 14 14 15 96</td>
</tr>
</tbody>
</table>

(0) Value indicates no activity; Volume per well: 50μl; Borer size used: 6mm used Plant Methanolic extract concentrations (A=100, B=300, and C=500 mg/DMSO ml) MIC-Minimum inhibitory concentration.

Comment [U17]: Remove this figure as it caused repetition of the data that is represented in table 1.

Fig.1a. Antimicrobial activity of methanol extracts Premna pubescens-Blume.
The results of MICs values are lowest at 66 and highest at 1532 mg/ml for *P. pubescens* whereas 0.155 mg/ml for *C. asatica*. The variation of antimicrobial activity of these extracts might be due to the distribution of antimicrobial substances, which is varied from fraction to fraction of the crude extract. No inhibitions were observed with *P. pubescens* on *P. expansum* and *C. asatica* on *P. aeruginosa* and *S. mutans*.

DISCUSSION

These extracts are harmless and nonphytotoxic; it has been proved that extracts have inhibitory effects on germination and on the viability of fungal spores as well. Both plant extracts showed moderate to good activity against *A. niger* as it is a saprophyte in soil causing black mould of onion, garlic and shallot, stem root of Dracaena, root stalk of Sansevieria, and boll rot of cotton; spoilage of cashew kernels, dates, figs, vanilla pods and dried prune. The effectiveness of the active compounds in plant extracts causes the production of
growth inhibition zones that appear as clear areas surrounding the wells. However, plant extract was unable to exhibit antibacterial activity against tested bacterial strains. These bacterial strains may have some kinds of resistance mechanisms e.g. enzymatic inactivation, target sites modification and decrease of intracellular drug accumulation (Santajit & Indrawattana, 2016) or the concentration of the compound used may not be sufficient.

The adverse effects of *P. pubescens* consumption are reported to cause blisters, lesions and eruptions when taken by patients for the treatment of joint pains and gastrointestinal problems. Due to its toxicity, the latex extracted from the stem has traditionally been used to make poison arrows (Khairiah et al., 2017). The latex is highly toxic to human eyes and produces sudden, painless dimness of vision with photophobia (Micheloud et al., 2017). Several phytochemicals are identified in different parts. *P. pubescens* flowers contain terpenes, multiflorenol, and cyclisadol (Tan et al., 2017). The latex contains caoutchouc, calotropin, calotoxin, calactin, uscharin, trypsin, voruscharin, uzarigenin, syriogenin and proceroaside (Bezerra et al., 2017). Chemical constituents of *P. pubescens* flowers are lupeol, uscharin, proceroaside, proceragenin (cardenolide), syriogenin, taraxast-20(30)-en-3-(4-methyl-3-pentenoate), 3-thiazoline-cardenolide, gigantin, giganteol, isogiganteol, uscharidin, uzarigenin voruscharinin, calotropeol, 3-epimoretanol, a-lactuceryl acetate and alactuceryl isovalerate (Wen et al., 2017). Root bark of *P. pubescens* contains triterpenes. A new norditerpenyl ester, named calotropterpenyl ester, and two unknown pentacyclic triterpinoids, namely calotropursenylacetate and calotropfriedelenylacetate, akundarolisovalerate, mundarol isovalerate and quercetin, 3-rutinoside (Wen et al., 2017). The principal active medicinals are asclepin and mudarin (Lam et al., 2016).
No inhibition was observed with controls, which proves that solvents could not act as antimicrobial agents. In almost all tests, crude methanolic extracts showed better inhibition against all the tested bacterial and fungal strains, indicating that active ingredients in plant materials could be extracted into methanol. However, the highest antibacterial activity of *P. pubescens* was observed due to the presence of secondary metabolites such as alkaloids, flavonoids, and steroids against *S. aureus*. *Pseudomonas aeruginosa* is widespread in soil, water, and sewage can be considered as an indication of their involvement in the natural process of mineralization of organic matter. It has long been a troublesome cause of secondary infections of wound, especially burns, giving rise to blue green pus. It produces meningitis, when introduced by lumbar puncture and urinary tract infection when introduced by catheters and instruments or irrigating solutions (Miyazaki et al., 2016). *S. aureus* occur harmlessly as a normal flora of the skin and mucous membrane and is one of the commonest bacterial pathogens encountered in the community causing severe food poisoning or minor skin infections to severe lifethreatening infections (Brooks et al., 2004). *C. asiatica* methanol extract having strong inhibition activity against *P. aeruginosa* and *S. aureus* was previously reported by (Thangavel Arumugam et al. 2011).

CONCLUSIONS

Premna pubescens and *Centella asiatica* extracts of showed antimicrobial activity against tested pathogens including antibiotic resistant strains. Further studies are being carried out in order to separate the individual components in plant extracts of *P. pubescens* and *C. asiatica* using column chromatography to develop biopesticides as alternative to synthetic agents. However, it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.
ACKNOWLEDGEMENTS

We are thankful for constant encouragement and support from Biology Department, Mathematics and Natural Sciences, BOPTN Grants Funding Medan State University, Post-doctoral grants from the ministry of research, technology and higher education of Indonesia.

REFERENCES

Your paper has undergone first reviews. You received two reviews from two independent reviewers who don’t know your identity. Their remarks are impartial, focused on the merit and academic quality of your paper. They are renowned professionals with huge experience in publishing and reviewing papers in your field of study. You may disagree with some of their remarks but keep in mind that the reviewers are experts in your chosen topic and they will help you improve your paper. It is normal even for experienced conservators and researchers to receive huge numbers of remarks from reviewers.

The authors are obliged by the publishing agreement to carry out all the changes advised by reviewers within a deadline set by the editor. Refusal or not providing the amended document on time will result in rejecting your paper for publication.

Overall comments:
Author is advised to re-write the full text carefully with the help of English Language Expert and correct the spelling, grammar, punctuation and vocabulary usage errors. Provide English Language Editing certificate.

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Part of the Manuscript</th>
<th>Reviewer’s Comments</th>
<th>Response of Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Corresponding Author</td>
<td>Who is the corresponding author? One author must be designated as “Corresponding Author”. Name with contact details (E-mail address, full postal address and Telephone number) of corresponding author should be mentioned here clearly.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Running Title</td>
<td>Provide the running title of the article as it is necessary according to the format of the journal.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>liveDNA</td>
<td>From January 1, 2017, it’s compulsory for all corresponding authors submitting papers to any Science Alert Journal to provide LiveDNA IDs (livedna.net) before final publication of their articles. With this standard identifier, you can create a profile of your research activities to distinguish yourself from other researchers with similar names, and</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Section</td>
<td>Text</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Conflict of interest</td>
<td>A statement on conflicts of interest should be included in the manuscript. Either mention: ‘none declared’, or specify the authors’ financial or other interests which should be known to the readers.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Author’s contribution</td>
<td>There is a series of questions that will enable you to state the contributions of each author. Each author listed on the manuscript should have a real and concrete contribution to the submission. Every single person who contributed to the manuscript should be listed. More information about authorship can be collected from Editorial Policies.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Significance statement</td>
<td>A statement about the significance of this research work should be included in the manuscript. The significance statement should provide the novelty aspect and significance of this research work with respect to the existing literature and more generally to the society. It should be a short summary which describe what this paper adds to and what was already known. Start this statement with the following words: This study discover the ---------------- that can be beneficial for And the last sentence of this statement could be such as: This study will help the researcher to uncover the critical area of ---------------- that many researchers were not able to explore. Thus a new theory on ---------------- may be arrived at. A Model Significance Statement: This study discovers the possible synergistic effect of vitamin E, calcium, and vitamin D combination that can be beneficial for osteoporosis-induced ovariectomized rats. This study will help the researcher to uncover the critical area of postmenopausal bone loss that many researchers were not able to explore. Thus, a new theory on these micronutrients combination, and possibly other combinations, may be arrived at.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Abstract</td>
<td>Which Statistical method was being used to analyze data? \ Poorest written future recommendation should not be added in conclusion.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Introduction</td>
<td>References must be cited in the text in superscript digits at the end of sentence or paragraph before punctuation or full stop. In case of two or more references, separate the superscript digits by commas. Moreover, if there are more references but in</td>
<td></td>
</tr>
</tbody>
</table>
continuous numbers then use dash between superscript digits.

| 9 | Materials and Methods | When the study was carried out?
| | | mention the grading of chemich either analytical grade was used or other
| | | Please indicate both the manufacturer’s name and location (including city, state, and country) for all specialized equipments, kits and reagents used in the experiment
| | | Which Statistical method was being used to analyze data?

| 10 | keywords | highlighted keywords are not unique. Provide at least five key words. Key words should be unique and a concise summary of your paper’s content and should capture the most important aspects of your paper

| 11 | References | References must be in English language
| | | References are each must be numbered, ordered sequentially as they appear in the text
| | | Some of the references are incomplete or not formatted properly. Such type of references are not acceptable. Go to Http://scialert.net and consult “references” from “guide to author” for having idea of reference categories and formatting

| figures | Mention the unit in which it was measured
| | Remove this figure as it caused repetition of the data that is represented in table 1

| acknowledgement | Funding source with relevant grant number should be mentioned in the Acknowledgement.

| conclusion | Poorly written
| | conclude about the findings so that a reader should have a good idea of what you have investigated and discovered
| | future recommendation should be added separately

| result | recheck it as lowest MIC value is 0 according to above table

Don't forget to make the changes
One of the biggest mistakes made by authors is to respond to all the comments, but forget to actually update the paper. Don't be that person: one way to make sure you remember is to always include line numbers in your changes. That way, you actually have to make the change first before including the line numbers in your response.

How to prepare the revised paper?

1. Before you start editing the document, make sure Tracking changes is enabled! In MS Word go to Review menu and enable 'Track changes'.
2. You have to address every comment from both reviewers.
3. Mark your every change by adding a comment, excluding typos or similar minor editorial errors.

The comments should include a justification of the change (or lack of change). In other words, answers to two questions:

- Why I made this change?
- What is the result?

If you decide to explain or justify why you believe your change (or lack of it) adds to the paper, always make sure to clearly indicate parts of paper you refer to (e.g. I mentioned this fact already in the Introduction, p. 1 paragraph 2. I believe bringing up this information there clarifies the issue from the very beginning). Don't add comments with questions. Bear in mind that:

- Our editors won't answer them
- There will be only two stages of corrections – after major and minor review. There is no space for discussions with the reviewers.

If you remove something, don’t mark it like this. Instead, mark the whole paragraph by adding a comment with explanations of what you did and how it helps to improve the paper.

Summary: Track changes + put a comment with justification on every change you make

b. Cover letter

It is a good academic practice to attach a cover letter to submissions of new and revised papers to journals. Cover letter sent with the paper after major review usually includes:

- Courteous thanks to the editor, etc.
- General confirmation on carrying out all minor editorial corrections (typos etc.)
- Confirmation of implementing the requested changes. Explanations on general character of changes. You may mention 1-3 fundamental changes you made and explain how you dealt with it.
- A list of tasks given by the reviewer with precise indication where in the document you included the changes.
- Other comments those are important to the editor.

Antimicrobial Profile of *Premna pubescens* Blume and *Centella asiatica* Extracts Against Bacteria and Fungi Pathogens

-Martina Restuati, †DikySetyaDiningrat

†Biology Department of Mathematics and Natural Sciences Faculty, Medan State University, North Sumatera Indonesia.

[corresponding author]
Background and Objective: North Sumatera Indonesia has a rich heritage of knowledge on plant based drugs both for use in preventive and curative medicine. *Premna pubescens* Blume (Buasbuas) has been used to increase the body immunity and endurance. *Centella asiatica* (Pegagan) used for medicinal purposes. Native to China, India and Indonesia recently have had interest in herb for its possible health benefits. The aim of the study was to investigate *in vitro* antimicrobial activity of North Sumatera medicinal plants *P. pubescens* and *C. asiatica* against the important pathogens. To investigate *in vitro* antimicrobial activity of aerial parts of *P. pubescens* and *C. asiatica*, that popularly used as folk medicines.

Materials and Methods: The organic solvent plant extracts are tested on the various microorganisms including bacteria and fungi using agar diffusion technique. **Results:** The length of the inhibition zone was measured in millimeters from the edge of the well to the inhibition zone. *P. pubescens* showed significant to moderate activity against (14 mm) *Pseudomonas marginalis* and (21 mm) *Streptococcus mutans* with 100 mg/ml DMSO plant drug concentration. The results of (MICs) values are lowest at 66 and highest at 152 mg/ml for *P. pubescens* whereas 0 to 155 mg/ml for *C. asiatica*. **Conclusion:** The extracts were assessed to validate the potential activity of the medicinal plants against microbes. These studies were conducted to separate the individual component of *P. pubescens* and *C. asiatica* using column chromatography to develop alternative synthetic agents. However, it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.

Keywords: *Premna pubescens* Blume, *Centella asiatica*, antimicrobial, Minimum inhibitory concentration (MIC), Inhibition zone

INTRODUCTION

The number of medicinal plants is nearly 20,000, this data was according to a study conducted by the World Health Organization (WHO) based on publications on pharmacopoeias and medicinal plants in 91 countries (Rios & Recio, 2005). Nearly 6-7 thousand species of medicinal plants out of about 17-18 thousand flowering plants are known to be in use in folk and officially recognized systems of medicine in Indonesia, i.e., North Sumatra, Borneo, Celebes and Papua (Roosita et al., 2008).
North Sumatera Indonesia has a rich heritage of knowledge on plant based drugs both for use in preventive and curative medicine (Khairiah et al., 2017). Since ancient civilization, the various parts of different plants were used to eliminate pain, control suffering and counteract disease. Plants generally produce many secondary metabolites which constitute an important source of microbicides, pesticides and many pharmaceutical drugs (Suswardany et al., 2017). It has also been widely observed and accepted that the medicinal value of plants lies in the bioactive phytocomponents present in the plants (Diningrat et al., 2015a; Restuati et al., 2016). Much work has been done on ethnomedicinal plants in North Sumatera Indonesia (Roosita et al., 2008; Khairiah et al., 2017; Diningrat et al., 2015b; Restuati et al., 2016). Medicinal plants represent a rich source of antimicrobial agents (Restuati et al., 2016; Johnson et al., 2010; Koochak et al., 2010). Because of the side effects and the resistance that pathogenic microorganisms build against antibiotics, many scientists have recently paid attention to extracts and biologically active compounds isolated from plant species used in herbal medicines (Perwitasari et al., 2016; Manaf et al., 2017).

Premna pubescens Blume (Family Lamiaceae) is a shrub or tree up to 7-10 m height. It is known by various names like bebuas and buas buas in Indonesia (Leeratiwong et al., 2016). In the traditional North Sumatera Indonesian medicinal system, it has been used to increase the body endurance, treat the unwell or catching a cold, help for blood coagulation and overcome for warm infection in children, help to increase breast milk (Khotimah & Muhtadi, 2017; Wibowo & Harlia, 2016), and also increase appetite (Hidayat, 2015). Compounds derived from the plant have been found to have alkaloid, flavonoid, saponin, steroid, dan fenolik (Diningrat et al., 2015a; Restuati et al., 2016). Antimicrobial activity of Premna pubescens Blume was previously screened by (Restuati et al., 2016).
Centella asiatica (Family Mackinlayaceae) common names include Pegagan, Asiatic Pennywort, North Sumatera Indonesian Pennywort, Luci Gong Gen, Takip, kohol, Antanan, Pegagan, Pegaga, vallaarai Kula kud, Bai Bua Bok and Brahmi. In North Sumatera Indonesia is well known as “Pegagan” it is used to improve the mental ability (Dogra et al., 2016; Jayaprakash & Nagarajan, 2016). Antibacterial activity of C. asiatica was previously screened by (Lin et al., 2017). The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera Indonesian medicinal plants P. pubescens and C. asiatica against the important pathogens. In this paper the results of such studies are reported in order to orient future investigations towards the finding of potent, less toxic to human health and safe antimicrobial agents from natural sources.

MATERIALS AND METHODS

Plant materials and extraction: The whole plants of *P. pubescens* and *C. asiatica* were collected from Medan State University campus plant collections aged 5-7 years for *P. pubescens* and 5-7 weeks for *C. asiatica* in Medan, North Sumatra, Indonesia. The botanical identification of the collected materials was conducted in herbarium of bogor botanical garden. The samples were separated and oven dried at 28°C room for 1 week. The samples were grounded into powder form using the grinder. Extraction using Soxhlet apparatus with 95% (v/v) Methanol as solvent for 12 h was performed. The resultant extraction was frozen and dried for 24°C/48 h. Yield of Methanol extracts: 30% (Villalobos et al., 2016).

Test microorganisms: Microbial strains of clinical, plant and aquatic origin i.e. *Asperigillus niger*, *Pencillium expansum*, *Fusarium oxysporum*, *Xanthomonus comprestries*, *Lactobacillus acidophilus*, *Pseudomonas marginalis*, *Pseudomonas syringae*, *Pseudomonas aeruginosa*, *Streptococcus mutans*, *Streptococcus salivarius* and *Staphylococcus aureus*.
including both fungi and bacteria were procured from Microbial Type Culture Collection (MTCC) Biology Department Medan State University. Active cultures were generated by inoculating a loopful of culture in separate 100 mL nutrient/potato dextrose broths and incubating on a shaker at 37°C overnight. The cells were harvested by centrifuging at 4000 rpm for 5 min, washed with normal saline, spun at 4000 rpm for 5 min again and diluted in normal saline to obtain 5 x 10⁵ cfu/mL.

Determination of antimicrobial activity: The crude extracts of the different plant parts of different species were subjected to antimicrobial assay using the agar well diffusion method (Balouiri et al., 2016). About 20 ml of nutrient agar was dispensed into sterile universal bottles. Then inoculated with 0.2 ml of cultures mixed gently and poured into sterile petri dishes. After setting a number 3-cup borer (6 mm diameter) was properly sterilized by flaming and used to make three to five uniform cups/wells in each petri dish. A drop of molten nutrient agar was used to seal the base of each cup. The cups/wells were filled with 50μl of the extract concentrations of 100, 300 and 500 mg/ml DMSO and allowed diffusion for 45 minutes. The solvents used to reconstitute the extracts were similarly analyzed. The plates were incubated at 37°C for 24 hours for bacteria. The above procedure is allowed for fungal assays, except the media potato dextrose agar instead of nutrient agar and incubates at 25°C for 48 hours. The zones of inhibition were measured with antibiotic zone scale in mm and the experiment was carried out in duplicates.

RESULTS

In the study of methanolic extract exhibited different degree of growth inhibition against the tested bacterial and fungal strains. According to Fig. 1a, 2 and Table 1, methanolic extracts of *P. pubescens* and *C. asatica* exhibited considerable antimicrobial activity against
tested microbial strains as shown in Table 1 and Figure 1a, b. *Premnapubescens* showed significant to moderate activity against *P. marginalis* and *S. mutans* with 100 mg/ml DMSO plant drug concentration. *Centella asiatica* is significant against *P. syringae* and moderate against other pathogens *F. oxysporum*, *L. acidophilus*, *S. Salivarius salivarius* and *S. Aureus aureus* with 100 mg/ml DMSO.

Table 1. Antimicrobial activity of methanolic extracts of *Premna pubescens* Blume and *Centella asiatica*

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Premna pubescens Blume</th>
<th>Centella asiatica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Penicillum expansum</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Bacteria (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus acidophilus</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Streptococcus salivarius</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Bacteria (-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas marginalis</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Pseudomonas syringae</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Xanthomonas campestris</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

(0) Value indicates no activity. Volume per well: 50μl. Borer size used: 6mm used Plant Methanolic extract concentrations (A =100, B=300, and C=500 mg/ml DMSO ml) MIC-Minimum inhibitory concentration
Fig. 1a. Antimicrobial activity of methanol extracts *Premna pubescens* Blume

Comment [U17]: Remove this figure as it caused repetition of the data that is represented in Table 1.

Comment [U18]: Remove this figure as it caused repetition of the data that is represented in Table 1.
The results of MICs values are lowest at 0.66 and highest at 1532 mg/ml for *P. pubescens* whereas 0.155 mg/ml for *C. asatica*. The variation of antimicrobial activity of these extracts might be due to the distribution of antimicrobial substances, which is varied from fraction to fraction of the crude extract. No inhibitions were observed with *P. pubescens* on *P. expansum* and *C. asatica* on *P. aeruginosa* and *S. mutans*.

DISCUSSION

These extracts are harmless and nonphytotoxic; it has been proved that extracts have inhibitory effects on germination and on the viability of fungal spores as well. Both plant extracts showed moderate to good activity against *A. niger* as it is a saprophyte in soil causing black mould of onion, garlic and shallot, stem root of Dracaena, root stalk rot of Sansevieria, and boll rot of cotton; spoilage of cashew kernels, dates, figs, vanilla pods and dried prune. The effectiveness of the active compounds in plant extracts causes the production of growth inhibition zones that appear as clear areas surrounding the wells. However, plant extract was unable to exhibit antibacterial activity against tested bacterial strains. These bacterial strains may have some kinds of resistance mechanisms e.g. enzymatic inactivation, target sites modification and decrease of intracellular drug accumulation (Santajit & Indrawattana, 2016) or the concentration of the compound used may not be sufficient.

The adverse effects of *P. pubescens* consumption are reported to cause blisters, lesions and eruptions when taken by patients for the treatment of joint pains and gastrointestinal problems. Due to its toxicity, the latex extracted from the stem has traditionally been used to make poison arrows (Khairiah et al., 2017). The latex is highly toxic to human eyes and produces sudden painless dimness of vision with photophobia (Micheloud et al., 2017). Several phytochemicals are identified in different parts. *P. pubescens* flowers contain terpenes, multiflorenol, and cyclisadol (Tan et al., 2017). The latex contains caoutchouc, calotropin, calotoxin, calactin,
uscharin, trypsin, voruscharin, uzarigenin, syriogenin and procero sine (Bezerra et al., 2017).

Chemical constituents of *P. pubescens* flowers are lupeol, uscharin, procero sine, procerigenin (cardenolide), syriogenin, taraxast-20(30)-en-3-(4-methyl-3-pentenoate), 3-thiazolincardenolide, gigantin, giganteol, isogiganteol, uscharidin, uzarigenin voruscharin a, calotropeol, 3-epimoretenol, a-lactuceryl acetate and alactuceryl isovalerate (Wen et al., 2017). Root bark of *P. pubescens* contains triterpenes, a new norditerpenyl ester, named calotropterpenyl ester, and two unknown pentacyclitriterpinoids, namely calotropursenylacetate and calotropfriedelenylacetate, akundarolisovalerate, mundarol isovalerate and quercetin, 3-rutinoside (Wen et al., 2017). The principal active medicinals are asclepin and mudarin (Lam et al., 2016).

No inhibition was observed with controls, which proves that solvents could not act as antimicrobial agents. In almost all tests, crude methanolic extracts showed better inhibition against all the tested bacterial and fungal strains, indicating that active ingredients in plant materials could be extracted into methanol. However, the highest antibacterial activity of *P. pubescens* was observed due to the presence of secondary metabolites such as alkaloids, flavonoids and steroids against *S. aureus*. *Pseudomonas aeruginosa* are widespread in soil, water and sewage can be considered as an indication of their involvement in the natural process of mineralization of organic matter. It has long been a troublesome cause of secondary infections of wound, especially burns, giving rise to blue green pus. It produces meningitis, when introduced by lumber puncture and urinary tract infection when introduced by catheters and instruments or irrigating solutions (Miyazaki et al., 2016). *S. aureus* occur harmlessly as a normal flora of the skin and mucous membrane and it is one of the commonest bacterial pathogens encountered in the community causing severe food
poisoning or minor skin infections to severe lifethreatening infections (Brooks et al., 2004). *C. asiatica* methanol extract having strong inhibition activity against *P. aeruginosa* and *S. aureus* was previously reported by (Thangavel Arumugam et al. 2011).

CONCLUSIONS

Premna pubescens and *Centella asiatica* extracts of showed antimicrobial activity against tested pathogens including antibiotic resistant strains. Further studies are being carried out in order to separate the individual components in plant extracts of *P. pubescens* and *C. asiatica* using column chromatography to develop biopesticides as alternative to synthetic agents. However, it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.

ACKNOWLEDGEMENTS

We are thankful for constant encouragement and support from Biology Department, Mathematics and Natural Sciences, BOPTN Grants Funding Medan State University, Post-doctoral grants from the ministry of research, technology and higher education of Indonesia.

REFERENCES

Your paper has undergone first reviews. You received two reviews from two independent reviewers who don’t know your identity. Their remarks are impartial, focused on the merit and academic quality of your paper. They are renowned professionals with huge experience in publishing and reviewing papers in your field of study. You may disagree with some of their remarks but keep in mind that the reviewers are experts in your chosen topic and they will help you improve your paper. It is normal even for experienced conservators and researchers to receive huge numbers of remarks from reviewers.

The authors are obliged by the publishing agreement to carry out all the changes advised by reviewers within a deadline set by the editor. Refusal or not providing the amended document on time will result in rejecting your paper for publication.

Overall comments:
Author is advised to re-write the full text carefully with the help of English Language Expert and correct the spelling, grammar, punctuation and vocabulary usage errors. Provide English Language Editing certificate

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Part of the Manuscript</th>
<th>Reviewer’s Comments</th>
<th>Response of Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Corresponding Author</td>
<td>Who is the corresponding author? One author must be designated as “Corresponding Author”. Name with contact details (E-mail address, full postal address and Telephone number) of corresponding author should be mentioned here clearly.</td>
<td>Diky Setya Diningrat, dikysd@unimed.ac.id Jl. Willem Iskandar Pasar V Medan Estate, Medan, North Sumatra, Indonesia, +62 81361362400</td>
</tr>
<tr>
<td>2</td>
<td>Running Title</td>
<td>Provide the running title of the article as it is necessary according to the format of the journal.</td>
<td>It will be repaired based on the format journal</td>
</tr>
<tr>
<td>3</td>
<td>liveDNA</td>
<td>From January 1, 2017, it’s compulsory for all corresponding authors submitting papers to any Science Alert Journal to provide LiveDNA iDs (livedna.net) before final publication of their articles. With this standard identifier, you can create a</td>
<td>I will submit to LiveDNA</td>
</tr>
</tbody>
</table>
A profile of your research activities to distinguish yourself from other researchers with similar names, and make it easier for your colleagues to find your publications. To get LiveDNA, please go to the link: http://livedna.net/form.php

Conflict of interest

A statement on conflicts of interest should be included in the manuscript. Either mention: 'none declared', or specify the authors' financial or other interests which should be known to the readers.

Author’s contribution

There is a series of questions that will enable you to state the contributions of each author. Each author listed on the manuscript should have a real and concrete contribution to the submission. Every single person who contributed to the manuscript should be listed. More information about authorship can be collected from Editorial Policies.

Significance statement

A statement about the significance of this research work should be included in the manuscript. The significance statement should provide the novelty aspect and significance of this research work with respect to the existing literature and more generally to the society. It should be a short summary which describe what this paper adds to and what was already known.

Start this statement with the following words: This study discover the ----------------- that can be beneficial for ……………

And the last sentence of this statement could be such as: This study will help the researcher to uncover the critical areas of ---------------- that many researchers were not able to explore. Thus a new theory on ---------------- may be arrived at.

A Model Significance Statement: This study discovers the possible synergistic effect of vitamin E, calcium, and vitamin D combination that can be beneficial for osteoporosis-induced ovariectomized rats. This study will help the researcher to uncover the critical area of postmenopausal bone loss that many researchers were not able to explore. Thus a new theory on these micronutrients combination, and possibly other combinations, may be arrived at.

Abstract

Which Statistical method was being used to analyze data?

Poorly written future recommendation should not be added in conclusion.
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Introduction</td>
<td>References must be cited in the text in superscript digits at the end of sentence or paragraph before punctuation or full stop. In case of two or more references, separate the superscript digits by comma. Moreover, if there are more references but in continuous numbers then use dash between superscript digits.</td>
</tr>
<tr>
<td>9</td>
<td>Materials and Methods</td>
<td>When the study was carried out? mention the grading of chemich either analytical grade was used or other. Please indicate both the manufacturer's name and location (including city, state, and country) for all specialized equipments, kits and reagents used in the experiment. Which Statistical method was being used to analyze data?</td>
</tr>
<tr>
<td>10</td>
<td>Keywords</td>
<td>highlighted keywords are not unique. Provide at least five key words. Key words should be unique and a concise summary of your paper's content and should capture the most important aspects of your paper.</td>
</tr>
<tr>
<td>11</td>
<td>References</td>
<td>References must be in English language. References are each must be numbered, ordered sequentially as they appear in the text.</td>
</tr>
</tbody>
</table>
Don't forget to make the changes

One of the biggest mistakes made by authors is to respond to all the comments, but forget to actually update the paper. Don't be that person: one way to make sure you remember is to always include line numbers in your changes. That way, you actually have to make the change first before including the line numbers in your response.

How to prepare the revised paper?

1. Before you start editing the document, make sure Tracking changes is enabled! In MS Word go to Review menu and enable ‘Track changes’.
2. You have to address every comment from both reviewers.
3. Mark your every change by adding a comment, excluding typos or similar minor editorial errors.

The comments should include a justification of the change (or lack of change!). In other words, answers to two questions:

- Why I made this change?
- What is the result?

If you decide to explain or justify why you believe your change (or lack of it) adds to the paper, always make sure to clearly indicate parts of paper you refer to (e.g. I mentioned this fact already in the Introduction, p. 1 paragraph 2. I believe bringing up this information there clarifies the issue from the very beginning).

Don't add comments with questions. Bear in mind that:

- Our editors won't answer them

Figures

- Motion the unit in which it was measured
- Remove this figure as it caused repetition of the data that is represented in table 1

Acknowledgement

- Funding source with relevant grant number should be mentioned in the Acknowledgement.

Conclusion

- Poorly written
- Conclude about the findings so that a reader should have a good idea of what you have investigated and discovered.
- Future recommendation should be added separately

Result

- Recheck it as lowest MIC value is 0 according to above table
- 0 is not the lowest MIC value because 0 has no bioactive compound activity in killing microbes on the contrast 66 MIC is the lowest one

Some of the references are incomplete or not formatted properly. Such type of references are not acceptable. Go to [Http://scialert.net](http://scialert.net) and consult “references” from “guide to author” for having idea of reference categories and formatting
There will be only two stages of corrections – after major and minor review. There is no space for discussions with the reviewers.

If you remove something, don’t mark it like this. Instead, mark the whole paragraph by adding a comment with explanations of what you did and how it helps to improve the paper.

Summary: Track changes + put a comment with justification on every change you make

b. Cover letter
It is a good academic practice to attach a cover letter to submissions of new and revised papers to journals. Cover letter sent with the paper after major review usually includes:

- Courteous thanks to the editor, etc.
- General confirmation on carrying out all minor editorial corrections (typos etc.)
- Confirmation of implementing the requested changes. Explanations on general character of changes. You may mention 1-3 fundamental changes you made and explain how you dealt with it.
- A list of tasks given by the reviewer with precise indication where in the document you included the changes.
- Other comments those are important to the editor.

List of change after reviewed

1. Title
 Before: Antimicrobial Profile of *Premna pubescens* Blume and *Centella asiatica* Extracts Against Bacteria and Fungi Pathogens
 After: Antimicrobial Profile of *Premna pubescens*. Blume and *Centella asiatica* Extracts Against Bacteria and Fungi Pathogens

2. Abstract:
 Before:
 Abstract
 Background and Objective: North Sumatera Indonesia has a rich heritage of knowledge on plant based drugs both for use in preventive and curative medicine. *Premna pubescens*.Blume (Buasbuas) has been used to increase the body immunity and endurance. *Centella asiatica* (Pegagan) used for medicinal purposes. Native to China, India and Indonesia recently have had interest in herb for its possible health benefits. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera medicinal plants *P. pubescens* and *C. asatica* against the important pathogens. To investigate in vitro antimicrobial activity of aerial parts of *P. pubescens* and *C. asatica*, that popularly used as folk medicines. **Materials and Methods:** The organic solvent plant extracts are tested on the various microorganisms including bacteria and fungi using agardiffusion technique. **Results:** The length of the inhibition zone was measured in millimeters from the edge of the well to the inhibition zone. *P. pubescens* showed significant to moderate activity against (14 mm) *Pseudomonas marginalis* and (21 mm) *Streptococcus mutans* with 100 mg/ml DMSO plant drug concentration. The results of (MICs) values are lowest at 66 and highest at 152 mg/ml for *P. pubescens* whereas 0 to 155 mg/ml for *C. asatica*. **Conclusion:** The extracts were assessed to validate the potential activity of the medicinal plants against microbes. These studies were conducted to separate the individual components of *P. pubescens* and *C. asatica* using column chromatography to develop alternative synthetic agents. However, it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.
 After:
Background and Objective: North Sumatera Indonesia has a rich heritage of knowledge on plant based drugs both for use in preventive and curative medicine. *Premna pubescens.* Blume (Buasbuas) has been used to increase the body immunity and endurance. *Centella asiatica* (Pegagan) used for medicinal purposes. This research is important performed to find out the antimicrobial capabilities of *P. pubescens* and *C. asiatica* methanol extracts. This research is expected to provide the scientific foundation for the development of plants that are traditionally believed to be efficacious drug. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera medicinal plants *P. pubescens* and *C. asiatica* against the important pathogens. **Materials and Methods:** The organic solvent plant extracts are tested on the various microorganisms including bacteria and fungi using agar diffusion technique. The data were analyzed with Anova statistics using SPSS software. **Results:** The length of the inhibition zone was measured in millimeters from the edge of the well to the inhibition zone. *P. pubescens* showed significant to moderate activity against (14 mm) *Pseudomonas marginalis* and (21 mm) *Streptococcus mutans* with 100 mg/ml DMSO plant drug concentration. The results of (MICs) values are lowest at 66 and highest at 152 mg/ml for *P. pubescens* whereas 0 to 155 mg/ml for *C. asiatica*. **Conclusion:** In general, based on the result of this research, it can be said that *P. pubescens* and *C. asiatica* plants can be used as antibacterial and antifungal compounds.
8. Before: **Plant materials and extraction:** The whole plants of *P. Pubescens* and *C. asiatica* were collected from Medan State University campus plant collections aged 5-7 years for *P. pubescens* and 5-7 weeks for *C. asiatica* in Medan, North Sumatra, Indonesia. The botanical identification of the collected materials was conducted in herbarium of Bogor botanical garden. The samples were separated and oven dried at 28°C room for 1 week. The samples were grounded into powder form using the grinder. Extraction using Soxhlet apparatus with 95% (v/v) Methanol as solvent for 12 h was performed. The resultant extraction was frozen and dried for 24°C/48 h. Yield of Methanol extracts: 30% (Villalobos et al., 2016).

After: **Plant materials and extraction:** This research project was conducted from July 2016 to November 2016 in Cell and Molecular Biology Laboratory of Medan State University. The whole plants of *P. pubescens* and *C. asiatica* were collected from Medan State University campus plant collections aged 5-7 years for *P. pubescens* and 5-7 weeks for *C. asiatica* in Medan, North Sumatra, Indonesia. The botanical identification of the collected materials was conducted in herbarium of Bogor botanical garden. The samples were separated and oven dried at 28°C room for 1 week. The samples were grounded into powder form using the grinder. Extraction using Soxhlet apparatus (IWAKI SOXHLET-100 IWAKI soxhlet extractor 100 ML) with 95% (v/v) Methanol PA (sigma-adrich) as solvent for 12 h was performed. The resultant extraction was frozen and dried for 24°C/48 h. Yield of Methanol extracts: 30%.

9. Before: No mentioned of statistical analysis

After: **Statistical analysis:** All data were statistically analyzed with SPSS software (version 16). One-way analysis of variance (ANOVA) was used to study significant difference among means with significance level at \(p=0.05 \).

10. Before:

RESULTS

In the study of methanolic extract exhibited different degree of growth inhibition against the tested bacterial and fungal strains. According to Fig. 1a, 2 and Table 1, methanolic extracts of *P. pubescens* and *C. asiatica* exhibited considerable antimicrobial activity against tested microbial strains as shown in Table 1 and figure 1a, b. *Premna pubescens* showed significant to moderate activity against *P. Marginalis* and *S. mutans* with 100 mg/ml DMSO plant drug concentration. *Centella asiatica* significant against *P. syringae* and moderate against other pathogens *F. oxysporum*, *L. acidophilus*, *S. Salivarius*, and *S. Aureus* with 100 mg/ml DMSO.

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Premna pubescens Blume</th>
<th>Centella asiatica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Fungi</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>--------------------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Penicillium expansum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Bacteria (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus acidophilus</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Streptococcus salivarius</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Bacteria (-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas marginalis</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Pseudomonas syringae</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Xanthomonas compestris</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

(0) Value indicates no activity. Volume per well: 50μl, Borer size used: 6mm used Plant Methanolic extract concentrations (A = 100, B = 300, and C = 500 mg/DMSO ml) MIC-Minimum inhibitory concentration.

Fig. 1a. Antimicrobial activity of methanol extracts Premna pubescens Blume.
After:

RESULTS

In the study of methanolic extract exhibited different degree of growth inhibition against the tested bacterial and fungal strains. Methanolic extracts of *P. pubescens* and *C. asiatica* exhibited considerable antimicrobial activity against tested microbial strains. *Premna pubescens* showed significant to moderate activity against *P. marginalis* and *S. mutans* with 100 mg/ml DMSO plant drug concentration. *Centella asiatica* is significant against *P. syringae* and moderate against other pathogens *F. oxysporum, L. acidophilus, S. salivarius* and *S. aureus* with 100 mg/ml DMSO.

Table 1. Antimicrobial activity of methanolic extracts *Premna pubescens*. Blume and *Centella asiatica*

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Premna pubescens. Blume</th>
<th>Centella asiatica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Penicillium expansum</td>
<td>Fusarium oxysporum</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>101</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>Bacteria (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteria (-)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| (0) Value indicates no activity, Volume per well: 50μl, Borer size used: 6mm used Plant Methanolic extract concentrations (A =100, B=300, and C=500 mg/ DMSO ml) MIC-Minimum inhibitory concentration

11. Before:

DISCUSSION

These extracts are harmless and nonphytotoxic; it has been proved that extracts have inhibitory effects on germination and on the viability of fungal spores as well.

After:

DISCUSSION

These extracts has been proved that extracts have inhibitory effects on germination and on the viability of fungal spores as well.

12. Before:

CONCLUSIONS

Premna pubescens and Centella asiatica extracts of showed antimicrobial activity against tested pathogens including antibiotic resistant strains. Further studies are being carried out in order to separate the individual components inplant extracts of P. pubescens and C. asiatica using column chromatography to develop biopesticides as alternative to synthetic agents. However, it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.

After:

CONCLUSION
Premna pubescens and Centella asiatica extracts of showed antimicrobial activity as antibacterial and anti-fungal against tested pathogens including antibiotic resistant strains. Future recommendation: it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.

13. Before:
ACKNOWLEDGEMENTS

We are thankful for constant encouragement and support from Biology Department, Mathematic and Natural Sciences, BOPTN Grants Funding Medan State University, Post-doctoral grants from the Ministry of Research, Technology and Higher Education of Indonesia.

After:
ACKNOWLEDGEMENTS

We are thankful for constant encouragement and support from Biology Department, Mathematic and Natural Sciences, BOPTN Grants Funding Medan State University with grant number 178A/UN33.8/KU/2016, Post-doctoral grants from the Ministry of Research, Technology and Higher Education of Indonesia.

14. Reference format:

Before:

REFERENCES

After:

REFERENCES

After:

REFERENCES

COVER LETTER FOR SUBMISSION OF NEW MANUSCRIPTS

Martina Restuati (author)
Diky Setya Diningrat (corresponding author)

Subject: SUBMISSION OF NEW MANUSCRIPT FOR EVALUATION

I am enclosing herewith a manuscript entitled “[Antimicrobial Profile of Premna pubescens. Blume and Centella asiatica Extracts Against Bacteria and Fungi Pathogens]” submitted to “[International Journal of Pharmacology]” for possible evaluation.

With the submission of this manuscript I would like to undertake that the above mentioned manuscript has not been published elsewhere, accepted for publication elsewhere or under editorial review for publication elsewhere; and that my Institute’s [Medan State University] representative is fully aware of this submission.

Select Type of Submitted manuscript:
 • Research Article

This research project was conducted from July 2016 to November 2017

Starting date Ending date

My Research Project was partially or fully sponsored by BOPTN Downstream Articles Research Grant with grant number 178A/UN33.8/KU/2016, and another project was partially sponsored by Post-Doctoral Research Grant from Ministry of Research, Technology and Higher education Republic Indonesia. The team leader of these research are Dr. Diky Setya Diningrat and Dr. Martina Restuati is a member.

Detail of the each author with his/her contribution in this paper is as under:

<table>
<thead>
<tr>
<th>Name of the author and e-mail ID</th>
<th>Types of contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Diky Setya Diningrat</td>
<td>Dr. Diky Setya Diningrat researched extract test on microbe</td>
</tr>
<tr>
<td>Dr. Martina Restuati</td>
<td>Dr. Martina Restuati researched extract of bioactive compound, blume and centella</td>
</tr>
</tbody>
</table>

I would also like to share the following information with Editor-in-Chief
For quick understanding about the importance of the project following are the significant findings of my submitted article?

This research identified extract activity of Premna and Centella on microbe however it is not new
research, this covers previous research published by the same author, but the latest and different one is the following:

1. kinds of microbe are equated
2. Conducting comparison activity of bioactive compound between Premna and Centella on the same microbe.

Therefore, The findings can be used as reference and development of bioactive compound on pharmacy industry

How findings of this research work are unique in their nature?

It compares anti-microbial compound from 2 species of plant commonly believed to be traditional efficacious drug in north Sumatra. Microbe is used as completely as representing ordinary pathogen which functions in human life and it comes from group of positive and negative Gram bacteria as well as fungus group

A paragraph explaining why your manuscript is appropriate for the selected journal

Because at the objective of research indicates this research compares 2 species of plant which function as anti-microbe and the conclusion states that the findings of research can be used as reference on development of both species of plants in pharmacy industry.

Last update on August 10, 2011
Revised Paper:

Antimicrobial Profile of *Premna pubescens*. Blume and *Centella asiatica* Extracts Against Bacteria and Fungi Pathogens

Martina Restuati and Diky Setya Diningrat
Biology Department of Mathematics and Natural Sciences Faculty, Medan State University, North Sumatera, Indonesia

Abstract

Background and Objective: North Sumatera Indonesia has a rich heritage of knowledge on plant based drugs both for use in preventive and curative medicine. *Premna pubescens*. Blume (Buasbuas) has been used to increase the body immunity and endurance. *Centella asiatica* (Pegagan) used for medicinal purposes. This research is important performed to find out the antimicrobial capabilities of *P. pubescens* and *C. asiatica* methanol extracts. This research is expected to provide the scientific foundation for the development of plants that are traditionally believed to be efficacious drug. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera medicinal plants *P. pubescens* and *C. asiatica* against the important pathogens.

Materials and Methods: The organic solvent plant extracts are tested on the various microorganisms including bacteria and fungi using agar diffusion technique. The data were analyzed with Anova statistics using SPSS software.

Results: The length of the inhibition zone was measured in millimeters from the edge of the well to the inhibition zone. *P. pubescens* showed significant to moderate activity against (14 mm) *Pseudomonas marginalis* and (21 mm) *Streptococcus mutans* with 100 mg/ml DMSO plant drug concentration. The results of (MICs) values are lowest at 66 and highest at 152 mg/ml for *P. pubescens* whereas 0 to 155 mg/ml for *C. asiatica*. **Conclusion:** In general, based on the result of this research, it can be said that *P. pubescens* and *C. asiatica* plants can be used as antibacterial and antifungal compounds.

Keywords: *Premna pubescens*. Blume, *Centella asiatica*, antibacterial, antifungal, Minimal inhibitory concentration
Dear Author,

For acceptance of article provide English Language Editing Certificate from any authorized company mentioned on Journal’s site or from native English person who helps you in editing the article. Without that it is not possible to process the article because overall presentation of the article is very poor. Author could not communicate his findings in a compelling and well written manner.

Provide revised submission along with English Language Editing Certificate so that we process article to next step quickly.

Address below highlighted comment of English Language Editing Certificate first and then submit revised manuscript.

REPLY TO REVIEWER’S COMMENTS SHEET
(Article No. 86564)

<7 days for implementing the changes>

Your paper has undergone first reviews. You received two reviews from two independent reviewers who don’t know your identity. Their remarks are impartial, focused on the merit and academic quality of your paper. They are renowned professionals with huge experience in publishing and reviewing papers in your field of study. You may disagree with some of their remarks but keep in mind that the reviewers are experts in your chosen topic and they will help you improve your paper. It is normal even for experienced conservators and researchers to receive huge numbers of remarks from reviewers.

The authors are obliged by the publishing agreement to carry out all the changes advised by reviewers within a deadline set by the editor. Refusal or not providing the amended document on time will result in rejecting your paper for publication.

Overall comments:
Author is advised to re-write the full text carefully with the help of English Language Expert and correct the spelling, grammar, punctuation and vocabulary usage errors. Provide English Language Editing certificate.

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Part of the Manuscript</th>
<th>Reviewer’s Comments</th>
<th>Response of Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Corresponding Author</td>
<td>Who is the corresponding author? One author must be designated as "Corresponding Author". Name with contact details (E-mail address, full</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Running Title</td>
<td>Provide the running title of the article as it is necessary according to the format of the journal.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>liveDNA</td>
<td>From January 1, 2017, its compulsory for all corresponding authors submitting papers to any Science Alert Journal to provide LiveDNA iDs (livedna.net) before final publication of their articles. With this standard identifier, you can create a profile of your research activities to distinguish yourself from other researchers with similar names, and make it easier for your colleagues to find your publications. To get LiveDNA, please go to the link: http://livedna.net/form.php</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Conflict of interest</td>
<td>A statement on conflicts of interest should be included in the manuscript. Either mention: ‘none declared’, or specify the authors’ financial or other interests which should be known to the readers.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Author’s contribution</td>
<td>There is a series of questions that will enable you to state the contributions of each author. Each author listed on the manuscript should have a real and concrete contribution to the submission. Every single person who contributed to the manuscript should be listed. More information about authorship can be collected from Editorial Policies.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Significance statement</td>
<td>A statement about the significance of this research work should be included in the manuscript. The significance statement should provide the novelty aspect and significance of this research work with respect to the existing literature and more generally to the society. It should be a short summary which describe what this paper adds to and what was already known. Start this statement with the following words: This study discover the ---------------- that can be beneficial for And the last sentence of this statement could be such as: This study will help the researcher to uncover the critical areas of ------------ that many researchers were not able to explore. Thus a new theory on ------------- may be arrived at. A Model Significance Statement: This study discovers the possible synergistic effect of vitamin E, calcium, and vitamin D combination that can be beneficial for osteoporosis-induced ovariectomized rats. This study will help the researcher to uncover the critical area of postmenopausal bone loss that many researchers were not able to explore. Thus, a new theory on these micronutrients combination, and</td>
<td></td>
</tr>
</tbody>
</table>
possibly other combinations, may be arrived at.

7	Abstract	Which Statistical method was being used to analyze data?
		Poorly written
		future recommendation should not be added in conclusion.

| 8 | Introduction | References must be cited in the text in superscript digits at the end of sentence or paragraph before punctuation or full stop. In case of two or more references, separate the superscript digits by comma. Moreover, if there are more references but in continuous numbers then use dash between superscript digits. |

9	Materials and Methods	When the study was carried out?
		mention the grading of chemich either analytical grade was used or other
		Please indicate both the manufacturer’s name and location (including city, state, and country) for all specialized equipments, kits and reagents used in the experiment
		Which Statistical method was being used to analyze data?

| 10 | keywords | highlighted keywords are not unique. Provide at least five key words. Key words should be unique and a concise summary of your paper’s content and should capture the most important aspects of your paper |

11	References	References must be in English language	
		References are each must be numbered, ordered sequentially as they appear in the text	
		Some of the references are incomplete or not formatted properly. Such type of references are not acceptable. Go to Http://scialert.net and consult “references” from “guide to author” for having idea of reference categories and formatting	
		figures	Mention the unit in which it was measured
		Remove this figure as it caused repetition of the data that is represented in table 1	
Don't forget to make the changes

One of the biggest mistakes made by authors is to respond to all the comments, but forget to actually update the paper. Don't be that person: one way to make sure you remember is to always include line numbers in your changes. That way, you actually have to make the change first before including the line numbers in your response.

How to prepare the revised paper?

1. Before you start editing the document, make sure Tracking changes is enabled! In MS Word go to Review menu and enable ‘Track changes’.
2. You have to address every comment from both reviewers.
3. Mark your every change by adding a comment, excluding typos or similar minor editorial errors.

The comments should include a justification of the change (or lack of change!). In other words, answers to two questions:
- Why I made this change?
- What is the result?

If you decide to explain or justify why you believe your change (or lack of it) adds to the paper, always make sure to clearly indicate parts of paper you refer to (e.g. I mentioned this fact already in the Introduction, p. 1 paragraph 2. I believe bringing up this information there clarifies the issue from the very beginning).

Don’t add comments with questions. Bear in mind that:
- Our editors won’t answer them
- There will be only two stages of corrections – after major and minor review. There is no space for discussions with the reviewers.

If you remove something, don’t mark it like this. Instead, mark the whole paragraph by adding a comment with explanations of what you did and how it helps to improve the paper.

Summary: Track changes + put a comment with justification on every change you make

b. Cover letter

It is a good academic practice to attach a cover letter to submissions of new and revised papers to journals. Cover letter sent with the paper after major review usually includes:
- Courteous thanks to the editor, etc.
- General confirmation on carrying out all minor editorial corrections (typos etc.)
- Confirmation of implementing the requested changes. Explanations on general character of changes. You may mention 1-3 fundamental changes you made and explain how you dealt with it.
Antimicrobial Profile of *Premna pubescens* Blume and *Centella asiatica* Extracts Against Bacteria and Fungi Pathogens

Martina Restuati, DikySetyaDiningrat

* Biology Department of Mathematics and Natural Sciences Faculty, Medan State University, North Sumatera Indonesia.

Abstract

Background and Objective: North Sumatera Indonesia has a rich heritage of knowledge on plant based drugs both for use in preventive and curative medicine. *Premna pubescens* Blume (Buasbuas) has been used to increase the body immunity and endurance. *Centella asiatica* (Pegagan) used for medicinal purposes. Native to China, India and Indonesia recently have had interest in herb for its possible health benefits. The aim of the study was to investigate *in vitro* antimicrobial activity of North Sumatera medicinal plants *P. pubescens* and *C. asiatica* against the important pathogens. To investigate *in vitro* antimicrobial activity of aerial parts of *P. pubescens* and *C. asiatica*, that popularly used as folk medicines. **Materials and Methods:** The organic solvent plant extracts are tested on the various microorganisms including bacteria and fungi using agar diffusion technique. **Results:** The length of the inhibition zone was measured in millimeters from the edge of the well to the inhibition zone. *P. pubescens* showed significant to moderate activity against (14 mm) *Pseudomonas marginalis* and (21 mm) *Streptococcus mutans* with 100 mg/ml DMSO plant drug concentration. The results of (MICs) values are lowest at 66 and highest at 152 mg/ml for *P. pubescens* whereas 0 to 155 mg/ml for *C. asiatica*. **Conclusion:** The extracts were assessed to validate the potential activity of the medicinal plants against microbes. These studies were conducted to separate the individual components of *P. pubescens* and *C. asiatica* using column chromatography to develop alternative synthetic agents. However, it is necessary to determine the toxicity of the active constituents, their side effects and pharmacokinetic properties.

Keywords: *Premna pubescens* Blume, *Centella asiatica*, antimicrobial, MIC, inhibition zone

INTRODUCTION
The number of medicinal plants is nearly 20,000, this data was according to a study conducted by the World Health Organization (WHO) based on publications on pharmacopoeias and medicinal plants in 91 countries (Rios & Recio, 2005). Nearly 6-7 thousand species of medicinal plants out of about 17-18 thousand flowering plants are known to be in use in folk and officially recognized systems of medicine in Indonesia, i.e., North Sumatra, Borneo, Celebes and Papua (Roosita et al., 2008).

North Sumatera Indonesia has a rich heritage of knowledge on plant based drugs both for use in preventive and curative medicine (Khairiah et al., 2017). Since ancient civilization, the various parts of different plants were used to eliminate pain, control suffering and counteract disease. Plants generally produce many secondary metabolites which constitute an important source of microbicides, pesticides and many pharmaceutical drugs (Suswardany et al., 2017). It has also been widely observed and accepted that the medicinal value of plants lies in the bioactive phytocomponents present in the plants (Diningrat et al., 2015a; Restuati et al, 2016). Much work has been done on ethnomedicinal plants in North Sumatera Indonesia (Roosita et al., 2008; Khairiah et al., 2017; Diningrat et al., 2015b; Restuati et al, 2016). Medicinal plants represent a rich source of antimicrobial agents (Restuati et al, 2016; Johnson et al., 2010; Koochak et al., 2010). Because of the side effects and the resistance that pathogenic microorganisms build against antibiotics, many scientists have recently paid attention to extracts and biologically active compounds isolated from plant species used in herbal medicines (Perwitasari et al., 2016; Manaf et al., 2017).

Premna pubescens Blume (Family Lamiaceae) is a shrub or tree up to 7-10 m height. It is known by various names like bebuas and buasbuas in Indonesia (Leeratiwong et al., 2016). In the
traditional North Sumatera Indonesian medicinal system, it has been used to increase the body endurance, treat the unwell or catching a cold, help for blood coagulation and overcome for warm infection in children, help to increase breast milk (Khotimah & Muhtadi, 2017; Wibowo & Harlia, 2016), and also increase appetite (Hidayat, 2015). Compounds derived from the plant have been found to have alkaloid, flavonoid, saponin, steroid, dan fenolik (Diningrat et al., 2015a; Restuati et al, 2016). Antimicrobial activity of *Premna pubescens* Blume was previously screened by (Restuati et al, 2016).

Centella asiatica (Family Mackinlayaceae) common names include Pegagan, Asiatic Pennywort, North Sumatera Indonesian Pennywort, Luei Gong Gen, Takip, kohol, Antanan, Pegagan, Pegaga, vallaarai Kula kud, Bai Bua Bok and Brahmi. In North Sumatera Indonesia is well known as “Pegagan” it is used to improve the mental ability (Dogra et al., 2016; Jayaprakash & Nagarajan, 2016). Antibacterial activity of *C. asiatica* was previously screened by (Lin et al., 2017). The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera Indonesian medicinal plants *P. pubescens* and *C. asiatica* against the important pathogens. In this paper the results of such studies are reported in order to orient future investigations towards the finding of potent, less toxic to human health and safe antimicrobial agents from natural sources.

MATERIALS AND METHODS

Plant materials and extraction: The whole plants of *P. pubescens* and *C. asiatica* were collected from Medan State University campus plant collections aged 5-7 years for *P. pubescens* and 5-7 weeks for *C. asiatica* in Medan, North Sumatra, Indonesia. The botanical identification of the collected materials was conducted in herbarium of bogor botanical garden. The samples were separated and oven dried at 28°C room for 1 week. The samples were
grounded into powder form using the grinder. Extraction using Soxhlet apparatus with 95% (v/v) Methanol as solvent for 12 h was performed. The resultant extraction was frozen and dried for 24°C/48 h. Yield of Methanol extracts: 30% (Villalobos et al., 2016).

Test microorganisms: Microbial strains of clinical, plant and aquatic origin i.e. Asperigellus niger, Pencilliumexpansum, Fusariumoxysporum, Xanthomonas compestries, Lactobacillus acidophilus, Pseudomonas marginalis, Pseudomonas syringae, Pseudomonas aeruginosa, Streptococcus mutans, Steptococcus salivarious and Staphylococcus aureus including both fungi and bacteria were procured from Microbial Type Culture Collection (MTCC) Biology Department Medan State University. Active cultures were generated by inoculating a loopful of culture in separate 100 mL nutrient/potato dextrose broths and incubating on a shaker at 37°C overnight. The cells were harvested by centrifuging at 4000 rpm for 5 min, washed with normal saline, spun at 4000 rpm for 5 min again and diluted in normal saline to obtain 5 x 10⁵ cfu/mL.

Determination of antimicrobial activity: The crude extracts of the different plant parts of different species were subjected to antimicrobial assay using the agar well diffusion method (Balouiri et al., 2016). About 20 ml of nutrient agar was dispensed into sterile universal bottles. Then inoculated with 0.2 ml of cultures mixed gently and poured into sterile petri dishes. After setting a number 3-cup borer (6 mm diameter) was properly sterilized by flaming and used to make three to five uniform cups/wells in each petri dish. A drop of molten nutrient agar was used to seal the base of each cup. The cups/wells were filled with 50μl of the extract concentrations of 100, 300 and 500 mg/ml DMSO and allow diffusion for 45 minutes. The solvents used to reconstitute the extracts were similarly analyzed. The plates were incubated at 37°C for 24 hours for bacteria. The above procedure is allowed for
fungal assays, except the media potato dextrose agar instead of nutrient agar and incubates at 25°C for 48 hours. The zones of inhibition were measured with antibiotic zone scale in mm and the experiment was carried out in duplicates.

Statistical analysis[15]

RESULTS

In the study of methanolic extract exhibited different degree of growth inhibition against the tested bacterial and fungal strains. According to Fig. 1a, 2 band Table 1, methanolic extracts of *P. pubescens* and *C. asatica* exhibited considerable antimicrobial activity against tested microbial strains as shown in table 1 and figure 1a, b. *Premnapubescens* showed significant to moderate activity against *P. Marginalis* and *S. mutans* with 100 mg/ml DMSO plant drug concentration. *Centellaasiatica* is significant against *P. syringae* and moderate against other pathogens *F. oxysporum*, *L. acidophilus*, *S. salivarius* and *S. aureus* with 100 mg/ml DMSO.

Table 1. Antimicrobial activity of methanolic extracts *Premna pubescens* Blume and *Centella asiatica*

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Premna pubescens Blume</th>
<th>Centellaasiatica</th>
<th>MIC[15]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>10</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Penicillium expansum</td>
<td>11</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>12</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Bacteria (+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus acidophilus</td>
<td>10</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>15</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Streptococcus salivarius</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>22</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>Bacteria (-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas marginalis</td>
<td>15</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Pseudomonas syringae</td>
<td>11</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>Pseudomonas</td>
<td>11</td>
<td>13</td>
<td>15</td>
</tr>
</tbody>
</table>
Table

<table>
<thead>
<tr>
<th></th>
<th>13</th>
<th>14</th>
<th>17</th>
<th>11</th>
<th>11</th>
<th>12</th>
<th>14</th>
<th>153</th>
</tr>
</thead>
<tbody>
<tr>
<td>aeruginosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xanthomonas compстиres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(0) Value indicates no activity. Volume per well: 50μl, Borer size used: 6mm used Plant Methanolic extract concentrations (A = 100, B = 300, and C = 500 mg/ DMSO ml) MIC-Minimum inhibitory concentration.

Figure 1. Antimicrobial activity of methanol extracts *Premna pubescens* Blume.

Character Building UNIVERSITY
The results of MICs values are lowest at 66 mg/ml and highest at 1532 mg/ml for *P. pubescens* whereas 0.155 mg/ml for *C. asiatica*. The variation of antimicrobial activity of *C. asiatica* might be due to the distribution of antimicrobial substances, which is varied from fraction to fraction of the crude extract. No inhibitions were observed with *P. pubescens* on *P. expansum* and *C. asiatica* on *P. aeruginosa* and *S. mutans*.

DISCUSSION

These extracts are harmless and nonphytotoxic; it has been proved that extracts have inhibitory effects on germination and on the viability of fungal spores as well. Both plant extracts showed moderate to good activity against *A. niger* as it is a saprophyte in soil causing black mould of onion, garlic and shallot, stem root of Dracaena, root stalk rot of Sansevieria, and boll rot of cotton; spoilage of cashew kernels, dates, figs, vanilla pods and dried prune. The effectiveness of the active compounds in plant extracts causes the production of
growth inhibition zones that appear as clear areas surrounding the wells. However, plant extract was unable to exhibit antibacterial activity against tested bacterial strains. These bacterial strains may have some kinds of resistance mechanisms e.g. enzymatic inactivation, target sites modification and decrease of intracellular drug accumulation (Santajit & Indrawattana, 2016) or the concentration of the compound used may not be sufficient.

The adverse effects of *P. pubescens* consumption are reported to cause blisters, lesions and eruptions when taken by patients for the treatment of joint pains and gastrointestinal problems. Due to its toxicity, the latex extracted from the stem has traditionally been used to make poison arrows (Khairiah et al., 2017). The latex is highly toxic to human eyes and produces sudden painless dimness of vision with photophobia (Micheloud et al., 2017). Several phytochemicals are identified in different parts. *P. pubescens* flowers contain terpenes, multiflorenol, and cyclisadol (Tan et al., 2017). The latex contains caoutchouc, calotropin, calotoxin, calactin, uscharin, trypsin, voruscharin, uzarigenin, syriogenin and proceroside (Bezerra et al., 2017). Chemical constituents of *P. pubescens* flowers are lupeol, uscharin, proceroside, proceragenin (cardenolide), syriogenin, taraxast-20(30)-en-3-(4-methyl-3-pentenoate), 3-thiazoline cardenolide, gigantin, giganteol, isogiganteol, uscharidin, uzarigenin voruscharin a, calotropeol, 3-epimoretenol, a-lactuceryl acetate and alactuceryl isovalerate (Wen et al., 2017). Root bark of *P. pubescens* contains triterpenes, a new norditerpenyl ester, named calotropterpenyl ester, and two unknown pentacyclic triterpinoids, namely calotropurseny lacetate and calotropfriedelenyl acetate, akundarolisovalerate, mundarol isovalerate and quercetin, 3-rutinoside (Wen et al., 2017). The principal active medicinals are asclepin and mudarin (Lam et al., 2016).
No inhibition was observed with controls, which proves that solvents could not act as antimicrobial agents. In almost all tests, crude methanolic extracts showed better inhibition against all the tested bacterial and fungal strains, indicating that active ingredients in plant materials could be extracted into methanol. However, the highest antibacterial activity of *P. pubescens* was observed due to the presence of secondary metabolites such as alkaloids, flavonoids and steroids against *S. aureus*. *Pseudomonas aeruginosa* is wide-spread in soil, water and sewage can be considered as an indication of their involvement in the natural process of mineralization of organic matter. It has long been a troublesome cause of secondary infections of wound, especially burns, giving rise to blue green pus. It produces meningitis, when introduced by lumbar puncture and urinary tract infection when introduced by catheters and instruments or irrigating solutions (Miyazaki et al., 2016). *S. aureus* occur harmlessly as a normal flora of the skin and mucous membrane and it is one of the commonest bacterial pathogens encountered in the community causing severe food poisoning or minor skin infections to severe lifethreatening infections (Brooks et al., 2004). *C. asiatica* methanol extract having strong inhibition activity against *P. aeruginosa* and *S. aureus* was previously reported by (Thangavel Arumugam et al. 2011).

CONCLUSION

Premna pubescens and *Centella asiatica* extracts showed antimicrobial activity against tested pathogens including antibiotic resistant strains. Further studies are being carried out in order to separate the individual components in plant extractsof *P. pubescens* and *C. asiatica* using column chromatography to develop biopesticides as alternative to synthetic agents. However, it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.
ACKNOWLEDGEMENTS

We are thankful for constant encouragement and support from Biology Department, Mathematic and Natural Sciences, BOPTN Grants Funding Medan State University, Post-doctoral grants from the ministry of research, technology and higher education of Indonesia.

REFERENCES

Dear Author,

For acceptance of article provide English Language Editing Certificate from any authorized company mentioned on Journal’s site or from native English person who helps you in editing the article. Without that it is not possible to process the article because overall presentation of the article is very poor. Author could not communicate his findings in a compelling and well written manner.

Provide revised submission along with English Language Editing Certificate so that we process article to next step quickly.

Address below highlighted comment of English Language Editing Certificate first and then submit revised manuscript.

REPLY TO REVIEWER’S COMMENTS SHEET
(Article No. 86564)

<7 days for implementing the changes>

Your paper has undergone first reviews. You received two reviews from two independent reviewers who don’t know your identity. Their remarks are impartial, focused on the merit and academic quality of your paper. They are renowned professionals with huge experience in publishing and reviewing papers in your field of study. You may disagree with some of their remarks but keep in mind that the reviewers are experts in your chosen topic and they will help you improve your paper. It is normal even for experienced conservators and researchers to receive huge numbers of remarks from reviewers.

The authors are obliged by the publishing agreement to carry out all the changes advised by reviewers within a deadline set by the editor. Refusal or not providing the amended document on time will result in rejecting your paper for publication.

Overall comments:
Author is advised to re-write the full text carefully with the help of English Language Expert and correct the spelling, grammar, punctuation and vocabulary usage errors. Provide English Language Editing certificate.

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Part of the Manuscript</th>
<th>Reviewer’s Comments</th>
<th>Response of Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Corresponding Author</td>
<td>Who is the corresponding author? One author must be designated as “Corresponding Author”. Name with contact details (E-mail address, full</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Running Title</td>
<td>Provide the running title of the article as it is necessary according to the format of the journal.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>liveDNA</td>
<td>From January 1, 2017, it's compulsory for all corresponding authors submitting papers to any Science Alert Journal to provide LiveDNA IDs (livedna.net) before final publication of their articles. With this standard identifier, you can create a profile of your research activities to distinguish yourself from other researchers with similar names, and make it easier for your colleagues to find your publications. To get LiveDNA, please go to the link: http://livedna.net/form.php</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Conflict of interest</td>
<td>A statement on conflicts of interest should be included in the manuscript. Either mention: 'none declared', or specify the authors' financial or other interests which should be known to the readers.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Author’s contribution</td>
<td>There is a series of questions that will enable you to state the contributions of each author. Each author listed on the manuscript should have a real and concrete contribution to the submission. Every single person who contributed to the manuscript should be listed. More information about authorship can be collected from Editorial Policies.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Significance statement</td>
<td>A statement about the significance of this research work should be included in the manuscript. The significance statement should provide the novelty aspect and significance of this research work with respect to the existing literature and more generally to the society. It should be a short summary which describe what this paper adds to and what was already known. Start this statement with the following words: This study discover the ---------------- that can be beneficial for And the last sentence of this statement could be such as: This study will help the researcher to uncover the critical areas of --------------- that many researchers were not able to explore. Thus a new theory on --------------- may be arrived at. A Model Significance Statement: This study discovers the possible synergistic effect of vitamin E, calcium, and vitamin D combination that can be beneficial for osteoporosis-induced ovariectomized rats. This study will help the researcher to uncover the critical area of postmenopausal bone loss that many researchers were not able to explore. Thus, a new theory on these micronutrients combination, and</td>
<td></td>
</tr>
</tbody>
</table>
possibly other combinations, may be arrived at.

7	Abstract	Which Statistical method was being used to analyze data?
		Poorly written
		future recommendation should not be added in conclusion.

| 8 | Introduction | References must be cited in the text in superscript digits at the end of sentence or paragraph before punctuation or full stop. In case of two or more references, separate the superscript digits by comma. Moreover, if there are more references but in continuous numbers then use dash between superscript digits. |

9	Materials and Methods	When the study was carried out?
		mention the grading of chemich either analytical grade was used or other
		Please indicate both the manufacturer’s name and location (including city, state, and country) for all specialized equipments, kits and reagents used in the experiment
		Which Statistical method was being used to analyze data?

| 10 | keywords | highlighted keywords are not unique. Provide at least five key words. Key words should be unique and a concise summary of your paper’s content and should capture the most important aspects of your paper |

11	References	References must be in English language
	References are each must be numbered, ordered sequentially as they appear in the text	
	Some of the references are incomplete or not formatted properly. Such type of references are not acceptable. Go to Http://scialert.net and consult “references” from “guide to author” for having idea of reference categories and formatting	
	figures	Mention the unit in which it was measured
		Remove this figure as it caused repetition of the data that is represented in table 1
Don't forget to make the changes

One of the biggest mistakes made by authors is to respond to all the comments, but forget to actually update the paper. Don't be that person: one way to make sure you remember is to always include line numbers in your changes. That way, you actually have to make the change first before including the line numbers in your response.

How to prepare the revised paper?

1. Before you start editing the document, make sure Tracking changes is enabled! In MS Word go to Review menu and enable ‘Track changes’.
2. You have to address every comment from both reviewers.
3. Mark your every change by adding a comment, excluding typos or similar minor editorial errors.

The comments should include a justification of the change (or lack of change!). In other words, answers to two questions:

- Why I made this change?
- What is the result?

If you decide to explain or justify why you believe your change (or lack of it) adds to the paper, always make sure to clearly indicate parts of paper you refer to (e.g. I mentioned this fact already in the Introduction, p. 1 paragraph 2. I believe bringing up this information there clarifies the issue from the very beginning). Don’t add comments with questions. Bear in mind that:

- Our editors won’t answer them
- There will be only two stages of corrections – after major and minor review. There is no space for discussions with the reviewers.

If you remove something, don’t mark it like this. Instead, mark the whole paragraph by adding a comment with explanations of what you did and how it helps to improve the paper.

Summary: Track changes + put a comment with justification on every change you make

b. Cover letter

It is a good academic practice to attach a cover letter to submissions of new and revised papers to journals. Cover letter sent with the paper after major review usually includes:

- Courteous thanks to the editor, etc.
- General confirmation on carrying out all minor editorial corrections (typos etc.)
- Confirmation of implementing the requested changes. Explanations on general character of changes. You may mention 1-3 fundamental changes you made and explain how you dealt with it.
Antimicrobial Profile of *Premna pubescens*.Blume and *Centella asiatica* Extracts Against Bacteria and Fungi Pathogens

1Martina Restuati, 1DikySetyaDiningrat

1*Biology Department of Mathematics and Natural Sciences Faculty, Medan State University, North Sumatera Indonesia.

Running title

Author contribution

Conflict of interest

Significance statement

Abstract

Background and Objective: North Sumatera Indonesia has a rich heritage of knowledge on plant based drugs both for use in preventive and curative medicine. *Premna pubescens* Blume (Buasbuas) has been used to increase the body immunity and endurance. *Centella asiatica* (Pegagan) used for medicinal purposes. Native to China, India and Indonesia recently have had interest in herb for its possible health benefits. The aim of the study was to investigate *in vitro* antimicrobial activity of North Sumatera medicinal plants *P. pubescens* and *C. asatica* against the important pathogens. To investigate *in vitro* antimicrobial activity of aerial parts of *P. pubescens* and *C. asatica*, that popularly used as folk medicines. **Materials and Methods:** The organic solvent plant extracts are tested on the various microorganisms including bacteria and fungi using agar diffusion technique. **Results:** The length of the inhibition zone was measured in millimeters from the edge of the well to the inhibition zone. *P. pubescens* showed significant to moderate activity against (14 mm) *Pseudomonas marginalis* and (21 mm) *Streptococcus mutans* with 100 mg/ml DMSO plant drug concentration. The results of (MICs) values are lowest at 66 and highest at 152 mg/ml for *P. pubescens* whereas 0 to 155 mg/ml for *C. asatica*. **Conclusion:** The extracts were assessed to validate the potential activity of the medicinal plants against microbes. These studies were conducted to separate the individual components of *P. pubescens* and *C. asatica* using column chromatography to develop alternative synthetic agents. However, it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.

Keywords: *Premna pubescens*, Blume, *Centella asiatica*, antimicrobial, Minimum inhibitory concentration (MIC), Inhibition zone

INTRODUCTION
The number of medicinal plants is nearly 20,000, this data was according to a study conducted by the World Health Organization (WHO) based on publications on pharmacopoeias and medicinal plants in 91 countries (Rios & Recio, 2005). Nearly 6-7 thousand species of medicinal plants out of about 17-18 thousand flowering plants are known to be in use in folk and officially recognized systems of medicine in Indonesia, i.e., North Sumatra, Borneo, Celebes and Papua (Roosita et al., 2008).

North Sumatera Indonesia has a rich heritage of knowledge on plant based drugs both for use in preventive and curative medicine (Khairiah et al., 2017). Since ancient civilization, the various parts of different plants were used to eliminate pain, control suffering and counteract disease. Plants generally produce many secondary metabolites which constitute an important source of microbicides, pesticides and many pharmaceutical drugs (Suswardany et al., 2017). It has also been widely observed and accepted that the medicinal value of plants lies in the bioactive phytocomponents present in the plants (Diningrat et al., 2015a; Restuati et al., 2016). Much work has been done on ethnomedicinal plants in North Sumatera Indonesia (Roosita et al., 2008; Khairiah et al., 2017; Diningrat et al., 2015b; Restuati et al., 2016). Medicinal plants represent a rich source of antimicrobial agents (Restuati et al., 2016; Johnson et al., 2010; Koochak et al., 2010). Because of the side effects and the resistance that pathogenic microorganisms build against antibiotics, many scientists have recently paid attention to extracts and biologically active compounds isolated from plant species used in herbal medicines (Perwitasari et al., 2016; Manaf et al., 2017).

Premna pubescens Blume (Family Lamiaceae) is a shrub or tree up to 7-10 m height. It is known by various names like bebuas and buasbuas in Indonesia (Leeratiwong et al., 2016). In the
traditional North Sumatera Indonesian medicinal system, it has been used to increase the body endurance, treat the unwell or catching a cold, help for blood coagulation and overcome for warm infection in children, help to increase breast milk (Khotimah & Muhtadi, 2017; (Wibowo & Harlia, 2016), and also increase appetite (Hidayat, 2015). Compounds derived from the plant have been found to have alkaloid, flavonoid, saponin, steroid, dan fenolik (Diningrat et al., 2015a; Restuati et al, 2016). Antimicrobial activity of Premna pubescens Blume was previously screened by (Restuati et al, 2016).

Centella asiatica (Family Mackinlayaceae) common names include Pegagan, Asiatic Pennywort, North Sumatera Indonesian Pennywort, Luei Gong Gen, Takip, kohol, Antanan, Pegagan, Pegaga, vallaarai Kula kud, Bai Bua Bok and Brahmi. In North Sumatera Indonesia is well known as “Pegagan” it is used to improve the mental ability (Dogra et al., 2016; Jayaprakash & Nagarajan, 2016). Antibacterial activity of C. asiatica was previously screened by (Lin et al., 2017). The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera Indonesian medicinal plants P. pubescens and C. asiatica against the important pathogens. In this paper the results of such studies are reported in order to orient future investigations towards the finding of potent, less toxic to human health and safe antimicrobial agents from natural sources.

MATERIALS AND METHODS

Plant materials and extraction: The whole plants of P. Pubescens pubescens and C. asiatica were collected from Medan State University campus plant collections aged 5-7 years for P. pubescens and 5-7 weeks for C. asiatica in Medan, North Sumatra, Indonesia. The botanical identification of the collected materials was conducted in herbarium of bogor botanical garden. The samples were separated and oven dried at 28°C room for 1 week. The samples were
grounded into powder form using the grinder. Extraction using Soxhlet apparatus with 95% (v/v) Methanol as solvent for 12 h was performed. The resultant extraction was frozen and dried for 24°C/48 h. Yield of Methanol extracts: 30% (Villalobos et al., 2016).

Test microorganisms: Microbial strains of clinical, plant and aquatic origin i.e. Asperigellus niger, Pencillium expansum, Fusarium oxysporum, Xanthomonas compestries, Lactobacillus acidophilus, Pseudomonas marginalis, Pseudomonas syringae, Pseudomonas aeruginosa, Streptococcus mutans, Steptococcus salivarius and Staphylococcus aureus including both fungi and bacteria were procured from Microbial Type Culture Collection (MTCC) Biology Department Medan State University. Active cultures were generated by inoculating a loopful of culture in separate 100 mL nutrient/potato dextrose broths and incubating on a shaker at 37°C overnight. The cells were harvested by centrifuging at 4000 rpm for 5 min, washed with normal saline, spun at 4000 rpm for 5 min again and diluted in normal saline to obtain 5 x 10^5 cfu/mL.

Determination of antimicrobial activity: The crude extracts of the different plant parts of different species were subjected to antimicrobial assay using the agar well diffusion method (Balouiri et al., 2016). About 20 ml of nutrient agar was dispensed into sterile universal bottles. Then inoculated with 0.2 ml of cultures mixed gently and poured into sterile petri dishes. After setting a number 3-cup borer (6 mm diameter) was properly sterilized by flaming and used to make three to five uniform cups/wells in each petri dish. A drop of molten nutrient agar was used to seal the base of each cup. The cups/wells were filled with 50μl of the extract concentrations of 100, 300 and 500 mg/ml DMSO and allow diffusion for 45 minutes. The solvents used to reconstitute the extracts were similarly analyzed. The plates were incubated at 37°C for 24 hours for bacteria. The above procedure is allowed for
fungal assays, except the media potato dextrose agar instead of nutrient agar and incubates at 25°C for 48 hours. The zones of inhibition were measured with antibiotic zone scale in mm and the experiment was carried out in duplicates.

Statistical analysis

RESULTS

In the study of methanolic extract exhibited different degree of growth inhibition against the tested bacterial and fungal strains. According to Fig. 1a, 2 and Table 1, methanolic extracts of *P. pubescens* and *C. asiatica* exhibited considerable antimicrobial activity against tested microbial strains as shown in table 1 and figure 1a, b. *Premnapubescens* showed significant to moderate activity against *P. Marginalis* and *S. mutans* with 100 mg/ml DMSO plant drug concentration. *Centella asiatica* is significant against *P. syringae* and moderate against other pathogens *F. oxysporum*, *L. acidophilus*, *S. Salivarious salivarious* and *S. Aureus* with 100 mg/ml DMSO.

Table 1. Antimicrobial activity of methanolic extracts

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Premna pubescens, Blume</th>
<th>Centella asiatica</th>
<th>MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>10</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Penicillium expansum</td>
<td>11</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>12</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Bacteria (+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus acidophilus</td>
<td>10</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>15</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Streptococcus salivarious</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>22</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>Bacteria (-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas marginalis</td>
<td>15</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Pseudomonas syringae</td>
<td>11</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>Pseudomonas</td>
<td>11</td>
<td>13</td>
<td>15</td>
</tr>
</tbody>
</table>
(0) Value indicates no activity. Volume per well: 50μl, Borer size used: 6mm used Plant Methanolic extract concentrations (A=100, B=300, and C=500 mg/ DMSO ml) MIC-Minimum inhibitory concentration

Fig. 1a. Antimicrobial activity of methanol extracts *Premna pubescens* Blume
The results of MICs values are lowest at 66 mg/ml and highest at 1532 mg/ml for *P. pubescens* whereas 0.155 mg/ml for *C. asiatica*. The variation of antimicrobial activity of these extracts might be due to the distribution of antimicrobial substances, which is varied from fraction to fraction of the crude extract. No inhibitions were observed with *P. pubescens* on *P. expansum* and *C. asiatica* on *P. aeruginosa* and *S. mutans*.

DISCUSSION

These extracts are harmless and nonphytotoxic; it has been proved that extracts have inhibitory effects on germination and on the viability of fungal spores as well. Both plant extracts showed moderate to good activity against *A. niger* as it is a saprophyte in soil causing black mould of onion, garlic and shallot, stem root of Dracaena, root stalk rot of Sansevieria, and boll rot of cotton; spoilage of cashew kernels, dates, figs, vanilla pods and dried prune. The effectiveness of the active compounds in plant extracts causes the production of
growth inhibition zones that appear as clear areas surrounding the wells. However, plant extract was unable to exhibit antibacterial activity against tested bacterial strains. These bacterial strains may have some kinds of resistance mechanisms e.g., enzymatic inactivation, target sites modification and decrease of intracellular drug accumulation (Santajit & Indrawattana, 2016) or the concentration of the compound used may not be sufficient.

The adverse effects of *P. pubescens* consumption are reported to cause blisters, lesions, and eruptions when taken by patients for the treatment of joint pains and gastrointestinal problems. Due to its toxicity, the latex extracted from the stem has traditionally been used to make poison arrows (Khairiah et al., 2017). The latex is highly toxic to human eyes and produces sudden painless dimness of vision with photophobia (Micheloud et al., 2017). Several phytochemicals are identified in different parts. *P. pubescens* flowers contain terpenes, multiflorenol, and cyclisadol (Tan et al., 2017). The latex contains caoutchouc, calotropin, calotoxin, calactin, uscharin, trypsin, voruscharin, uzarigenin, syriogenin, and proceroside (Bezerra et al., 2017). Chemical constituents of *P. pubescens* flowers are lupenol, uscharin, proceroside, proceragenin (cardenolide), syriogenin, taraxast-20(30)-en-3-(4-methyl-3-pentenoate), 3-thiazoline cardenolide, gigantin, giganteol, isogiganteol, uscharidin, uzarigenin, voruscharin a, calotropeol, 3-epimoretenol, a-lactuceryl acetate and alactuceryl isovalerate (Wen et al., 2017). Root bark of *P. pubescens* contains triterpenes, a new norditerpenyl ester, named calotropterpenyl ester, and two unknown pentacyclic triterpinoids, namely calotropursenylacetate and calotropfriedelenylacetate, akundarol isovalerate, mundarol isovalerate, and quercetin, 3-rutinoside (Wen et al., 2017). The principal active medicinals are asclepin and mudarin (Lam et al., 2016).
No inhibition was observed with controls, which proves that solvents could not act as antimicrobial agents. In almost all tests, crude methanolic extracts showed better inhibition against all the tested bacterial and fungal strains, indicating that active ingredients in plant materials could be extracted into methanol. However, the highest antibacterial activity of *P. pubescens* was observed due to the presence of secondary metabolites such as alkaloids, flavonoids and steroids against *S. aureus*. *Pseudomonas aeruginosa* are wide-spread in soil, water and sewage can be considered as an indication of their involvement in the natural process of mineralization of organic matter. It has long been a troublesome cause of secondary infections of wound, especially burns, giving rise to blue green pus. It produces meningitis, when introduced by lumbar puncture and urinary tract infection when introduced by catheters and instruments or irrigating solutions (Miyazaki et al., 2016). *S. aureus* occur harmlessly as a normal flora of the skin and mucous membrane and it is one of the commonest bacterial pathogens encountered in the community causing severe food poisoning or minor skin infections to severe life-threatening infections (Brooks et al., 2004). *C. asiatica* methanol extract having strong inhibition activity against *P. aeruginosa* and *S. aureus* was previously reported by (Thangavel Arumugam et al. 2011).

CONCLUSION

Premna pubescens and *Centella asiatica* extracts of showed antimicrobial activity against tested pathogens including antibiotic resistant strains. Further studies are being carried out in order to separate the individual components in plant extracts of *P. pubescens* and *C. asiatica* using column chromatography to develop biopesticides as alternatives to synthetic agents. However, it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.
ACKNOWLEDGEMENTS

We are thankful for constant encouragement and support from Biology Department, Mathematics and Natural Sciences, BOPTN Grants Funding, Medan State University, Post-doctoral grants from the ministry of research, technology and higher education of Indonesia.

REFERENCES

Your paper has undergone first reviews. You received two reviews from two independent reviewers who don’t know your identity. Their remarks are impartial, focused on the merit and academic quality of your paper. They are renowned professionals with huge experience in publishing and reviewing papers in your field of study. You may disagree with some of their remarks but keep in mind that the reviewers are experts in your chosen topic and they will help you improve your paper. It is normal even for experienced conservators and researchers to receive huge numbers of remarks from reviewers.

The authors are obliged by the publishing agreement to carry out all the changes advised by reviewers within a deadline set by the editor. Refusal or not providing the amended document on time will result in rejecting your paper for publication.

Overall comments:

Author is advised to re-write the full text carefully with the help of English Language Expert and correct the spelling, grammar, punctuation and vocabulary usage errors. Provide English Language Editing certificate.

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Part of the Manuscript</th>
<th>Reviewer’s Comments</th>
<th>Response of Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Corresponding Author</td>
<td>Who is the corresponding author? One author must be designated as “Corresponding Author”. Name with contact details (E-mail address, full postal address and Telephone number) of corresponding author should be mentioned here clearly.</td>
<td>Diky Setya Diningrat, dikysd@unimed.ac.id Jl. Willem Iskandar Pasar V Medan Estate, Medan, North Sumatra, Indonesia, +62 81361362400</td>
</tr>
<tr>
<td>2</td>
<td>Running Title</td>
<td>Provide the running title of the article as it is necessary according to the format of the journal.</td>
<td>It will be repaired based on the format journal</td>
</tr>
<tr>
<td>3</td>
<td>liveDNA</td>
<td>From January 1, 2017, it’s compulsory for all corresponding authors submitting papers to any Science Alert Journal to provide LiveDNA iDs (livedna.net) before final publication of their articles. With this standard identifier, you can create a</td>
<td>I will submit to LiveDNA</td>
</tr>
<tr>
<td>Section</td>
<td>Instructions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 4 | **Conflict of interest**

A statement on conflicts of interest should be included in the manuscript. Either mention: 'none declared', or specify the authors' financial or other interests which should be known to the readers.

I will submit in cover letter

| 5 | **Author's contribution**

There is a series of questions that will enable you to state the contributions of each author. Each author listed on the manuscript should have a real and concrete contribution to the submission. Every single person who contributed to the manuscript should be listed. More information about authorship can be collected from Editorial Policies

I will submit in cover letter

| 6 | **Significance statement**

A statement about the significance of this research work should be included in the manuscript. The significance statement should provide the novelty aspect and significance of this research work with respect to the existing literature and more generally to the society. It should be a short summary which describe what this paper adds to and what was already known.

Start this statement with the following words: This study discover the ---------------------- that can be beneficial for ……………

And the last sentence of this statement could be such as:

This study will help the researcher to uncover the critical areas of ---------------- that many researchers were not able to explore. Thus a new theory on ---------------- may be arrived at.

A Model Significance Statement: This study discovers the possible synergistic effect of vitamin E, calcium, and vitamin D combination that can be beneficial for osteoporosis-induced ovariectomized rats. This study will help the researcher to uncover the critical area of postmenopausal bone loss that many researchers were not able to explore. Thus, a new theory on these micronutrients combination, and possibly other combinations, may be arrived at.

I will submit in cover letter

| 7 | **Abstract**

Which Statistical method was being used to analyze data?

Poorly written

future recommendation should not be added in conclusion.

Statistical method used is ANAVA (analysis of variant) using software of
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Introduction</td>
<td>References must be cited in the text in superscript digits at the end of sentence or paragraph before punctuation or full stop(^1). In case of two or more references, separate the superscript digits by comma(^{1,2,6}). Moreover, if there are more references but in continuous numbers then use dash between superscript digits(^{2-6}).</td>
</tr>
</tbody>
</table>
| 9 | Materials and Methods | When the study was carried out?

mention the grading of chemich either analytical grade was used or other

Please indicate both the manufacturer’s name and location (including city, state, and country) for all specialized equipments, kits and reagents used in the experiment

Which Statistical method was being used to analyze data? |
| 10 | Keywords | highlighted keywords are not unique. Provide at least five key words. Key words should be unique and a concise summary of your paper’s content and should capture the most important aspects of your paper |
| 11 | References | References must be in English language

References are each must be numbered, ordered sequentially as they appear in the text |
Some of the references are incomplete or not formatted properly. Such type of references are not acceptable. Go to Http://scialert.net and consult “references” from “guide to author” for having idea of reference categories and formatting

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>figures</td>
<td>Motion the unit in which it was measured</td>
<td>Will be mentioned</td>
</tr>
<tr>
<td></td>
<td>Remove this figure as it caused repetition of the data that is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>represented in table 1</td>
<td></td>
</tr>
<tr>
<td>acknowledgement</td>
<td>Funding source with relevant grant number should be mentioned</td>
<td>Will be mentioned</td>
</tr>
<tr>
<td></td>
<td>in the Acknowledgement.</td>
<td></td>
</tr>
<tr>
<td>conclusion</td>
<td>Poorly written</td>
<td>Will be added</td>
</tr>
<tr>
<td></td>
<td>conclude about the findings so that a reader should have a good</td>
<td></td>
</tr>
<tr>
<td></td>
<td>idea of what you have investigated and discovered.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>future recommendation should be added separately</td>
<td></td>
</tr>
<tr>
<td>result</td>
<td>recheck it as lowest MIC value is 0 according to above table</td>
<td>0 is not the lowest MIC value because 0 has no bioactive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>compound activity in killing microbes on the contrast 66 MIC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>is the lowest one</td>
</tr>
</tbody>
</table>

Don't forget to make the changes

One of the biggest mistakes made by authors is to respond to all the comments, but forget to actually update the paper. Don't be that person: one way to make sure you remember is to always include line numbers in your changes. That way, you actually have to make the change first before including the line numbers in your response.

How to prepare the revised paper?

1. **Before you start editing the document, make sure Tracking changes is enabled!** In MS Word go to Review menu and enable ‘Track changes’.
2. You have to address every comment from both reviewers.
3. Mark your every change by adding a comment, excluding typos or similar minor editorial errors.

The comments should include a justification of the change (or lack of change!). In other words, answers to two questions:

- Why I made this change?
- What is the result?

If you decide to explain or justify why you believe your change (or lack of it) adds to the paper, always make sure to clearly indicate parts of paper you refer to (e.g. I mentioned this fact already in the Introduction, p. 1 paragraph 2. I believe bringing up this information there clarifies the issue from the very beginning).

Don’t add comments with questions. Bear in mind that:

- Our editors won’t answer them
- There will be only two stages of corrections – after major and minor review. There is no space for discussions with the reviewers.

If you remove something, don’t mark it like this. Instead, mark the whole paragraph by adding a comment with explanations of what you did and how it helps to improve the paper.

Summary: Track changes + put a comment with justification on every change you make

b. Cover letter
It is a good academic practice to attach a cover letter to submissions of new and revised papers to journals. Cover letter sent with the paper after major review usually includes:

- Courteous thanks to the editor, etc.
- General confirmation on carrying out all minor editorial corrections (typos etc.)
- Confirmation of implementing the requested changes. Explanations on general character of changes. You may mention 1-3 fundamental changes you made and explain how you dealt with it.
- A list of tasks given by the reviewer with precise indication where in the document you included the changes.
- Other comments those are important to the editor.

List of change after reviewed
1. Title
 Before: Antimicrobial Profile of *Premna pubescens* Blume and *Centella asiatica* Extracts Against Bacteria and Fungi Pathogens
 After: Antimicrobial Profile of *Premna pubescens*. Blume and *Centella asiatica* Extracts Against Bacteria and Fungi Pathogens

2. Abstract:
 Before:
 Abstract
 Background and Objective: North Sumatera Indonesia has a rich heritage of knowledge on plant based drugs both for use in preventive and curative medicine. *Premna pubescens*.Blume (Buasbuas) has been used to increase the body immunity and endurance. *Centella asiatica* (Pegagan) used for medicinal purposes. Native to China, India and Indonesia recently have had interest in herb for its possible health benefits. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera medicinal plants *P. pubescens* and *C. asatica* against the important pathogens. To investigate in vitro antimicrobial activity of aerial parts of *P. pubescens* and *C. asatica*, that popularly used as folk medicines. Materials and Methods: The organic solvent plant extracts are tested on the various microorganisms including bacteria and fungi using agardiffusion technique. Results: The length of the inhibition zone was measured in millimeters from the edge of the well to the inhibition zone. *P. pubescens* showed significant to moderate activity against (14 mm) *Pseudomonas marginalis* and (21 mm) *Streptococcus mutans* with 100 mg/ml DMSO plant drug concentration. The results of (MICs) values are lowest at 66 and highest at 152 mg/ml for *P. pubescens* whereas 0 to 155 mg/ml for *C. asiatica*. Conclusion: The extracts were assessed to validate the potential activity of the medicinal plants against microbes. These studies were conducted to separate the individual components of *P. pubescens* and *C. asatica* using column chromatography to develop alternative synthetic agents. However, it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.
 After:
Background and Objective: North Sumatera Indonesia has a rich heritage of knowledge on plant based drugs both for use in preventive and curative medicine. *Premna pubescens*. Blume (Buasbuas) has been used to increase the body immunity and endurance. *Centella asiatica* (Pegagan) used for medicinal purposes. This research is important performed to find out the antimicrobial capabilities of *P. pubescens* and *C. asiatica* methanol extracts. This research is expected to provide the scientific foundation for the development of plants that are traditionally believed to be efficacious drug. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera medicinal plants *P. pubescens* and *C. asiatica* against the important pathogens. Materials and Methods: The organic solvent plant extracts are tested on the various microorganisms including bacteria and fungi using agar diffusion technique. The data were analyzed with Anova statistics using SPSS software. Results: The length of the inhibition zone was measured in millimeters from the edge of the well to the inhibition zone. *P. pubescens* showed significant to moderate activity against (14 mm) *Pseudomonas marginalis* and (21 mm) *Streptococcus mutans* with 100 mg/ml DMSO plant drug concentration. The results of (MICs) values are lowest at 66 and highest at 152 mg/ml for *P. pubescens* whereas 0 to 155 mg/ml for *C. asiatica*. Conclusion: In general, based on the result of this research, it can be said that *P. pubescens* and *C. asiatica* plants can be used as antibacterial and antifungal compounds.
8. **Plant materials and extraction:** The whole plants of *P. Pubescens* and *C. asiatica* were collected from Medan State University campus plant collections aged 5-7 years for *P. pubescens* and 5-7 weeks for *C. asiatica* in Medan, North Sumatra, Indonesia. The botanical identification of the collected materials was conducted in herbarium of Bogor botanical garden. The samples were separated and oven dried at 28°C room for 1 week. The samples were grounded into powder form using the grinder. Extraction using Soxhlet apparatus with 95% (v/v) Methanol as solvent for 12 h was performed. The resultant extraction was frozen and dried for 24°C/48 h. Yield of Methanol extracts: 30% (Villalobos et al., 2016).

After: **Plant materials and extraction:** This research project was conducted from July 2016 to November 2016 in Cell and Molecular Biology Laboratory of Medan State University. The whole plants of *P. pubescens* and *C. asiatica* were collected from Medan State University campus plant collections aged 5-7 years for *P. pubescens* and 5-7 weeks for *C. asiatica* in Medan, North Sumatra, Indonesia. The botanical identification of the collected materials was conducted in herbarium of Bogor botanical garden. The samples were separated and oven dried at 28°C room for 1 week. The samples were grounded into powder form using the grinder. Extraction using Soxhlet apparatus (IWAKI SOXHLET-100 IWAKI soxhlet extractor 100 ML) with 95% (v/v) Methanol PA (sigma-adrich) as solvent for 12 h was performed. The resultant extraction was frozen and dried for 24°C/48 h. Yield of Methanol extracts: 30%.

9. **Before:** No mention of statistical analysis

After: **Statistical analysis:** All data were statistically analyzed with SPSS software (version 16). One-way analysis of variance (ANOVA) was used to study significant difference among means with significance level at p=0.05.

10. **RESULTS**

In the study of methanolic extract exhibited different degree of growth inhibition against the tested bacterial and fungal strains. According to Fig. 1a, 2 band Table 1, methanolic extracts of *P. pubescens* and *C. asiatica* exhibited considerable antimicrobial activity against tested microbial strains as shown in table 1 and figure 1a, b. *Premna pubescens* showed significant to moderate activity against *P. Marginalis* and *S. mutans* with 100 mg/ml DMSO plant drug concentration. *Centellaasiatica* significant against *P. syringae* and moderate against other pathogens *F. oxysporum*, *L. acidophilus*, *S. Salivarius*, *salivarius* and *S. Aureus*. *Aureus* with 100 mg/ml DMSO.

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Premna pubescens</th>
<th>Centella asiatica</th>
<th>MIC</th>
<th>MIC</th>
<th>MIC</th>
<th>MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungi</td>
<td>Aspergillus</td>
<td>A 10</td>
<td>B 11</td>
<td>C 13</td>
<td>153</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1: Antimicrobial Activity of Methanol Extracts of Premna pubescens Blume

<table>
<thead>
<tr>
<th>Organism</th>
<th>MIC (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillium expansum niger</td>
<td>11</td>
<td>14</td>
<td>15</td>
<td>101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>12</td>
<td>13</td>
<td>15</td>
<td>105</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>96</td>
</tr>
<tr>
<td>Lactobacillus acidophilus</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>121</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>156</td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>15</td>
<td>20</td>
<td>22</td>
<td>101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Streptococcus salivarius</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>101</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>128</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>22</td>
<td>26</td>
<td>29</td>
<td>67</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>148</td>
</tr>
<tr>
<td>Pseudomonas marginalis</td>
<td>15</td>
<td>14</td>
<td>16</td>
<td>11</td>
<td>11</td>
<td>16</td>
<td>26</td>
<td>145</td>
</tr>
<tr>
<td>Pseudomonas syringae</td>
<td>11</td>
<td>14</td>
<td>17</td>
<td>19</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>81</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Xanthomonas campestris</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>153</td>
</tr>
</tbody>
</table>

(0) Value indicates no activity. Volume per well: 50μl, Borer size used: 6mm used Plant Methanolic extract concentrations (A =100, B=300, and C=500 mg/ DMSO ml) MIC-Minimum inhibitory concentration

![Antimicrobial Activity of Methanol Extracts](image-url)

Fig. 1a Antimicrobial activity of methanol extracts *Premna pubescens* Blume
RESULTS

In the study of methanolic extract exhibited different degree of growth inhibition against the tested bacterial and fungal strains. Methanolic extracts of *P. pubescens* and *C. asiatica* exhibited considerable antimicrobial activity against tested microbial strains. *Premna pubescens* showed significant to moderate activity against *P. marginalis* and *S. mutans* with 100 mg/ml DMSO plant drug concentration. *Centella asiatica* is significant against *P. syringae* and moderate against other pathogens *F. oxysporum*, *L. acidophilus*, *S. salivarious* and *S. aureus* with 100 mg/ml DMSO.

Table 1. Antimicrobial activity of methanolic extracts *Premna pubescens*. Blume and *Centella asiatica*

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Premna pubescens. Blume</th>
<th>Centella asiatica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Penicillium expansum</td>
<td>Fusarium oxysporum</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>101</td>
<td>101</td>
<td>101</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bacteria (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteria (-)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(0) Value indicates no activity. Volume per well: 50μl, Borer size used: 6mm. Used Plant Methanolic extract concentrations (A = 100, B = 300, and C = 500 mg/DMSO ml). MIC - Minimum inhibitory concentration.

11. Before:

DISCUSSION

These extracts are harmless and nonphytotoxic; it has been proved that extracts have inhibitory effects on germination and on the viability of fungal spores as well.

After:

DISCUSSION

These extracts have been proved that extracts have inhibitory effects on germination and on the viability of fungal spores as well.

12. Before:

CONCLUSIONS

Premna pubescens and Centella asiatica extracts of showed antimicrobial activity against tested pathogens including antibiotic resistant strains. Further studies are being carried out in order to separate the individual components in plant extracts of P. pubescens and C. asiatica using column chromatography to develop biopesticides as alternative to synthetic agents. However, it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.

After: **CONCLUSION**
Premna pubescens and Centella asiatica extracts of showed antimicrobial activity as antibacterial and anti-fungal against tested pathogens including antibiotic resistant strains. Future recommendation: it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.

13. Before:

ACKNOWLEDGEMENTS

We are thankful for constant encouragement and support from Biology Department, Mathematics and Natural Sciences, BOPTN Grants Funding Medan State University, Post-doctoral grants from the ministry of research, technology and higher education of Indonesia.

After:

ACKNOWLEDGEMENTS

We are thankful for constant encouragement and support from Biology Department, Mathematics and Natural Sciences, BOPTN Grants Funding Medan State University with grant number 178A/UN33.8/KU/2016, Post-doctoral grants from the ministry of research, technology and higher education of Indonesia.

14. Reference format:

Before:

REFERENCES

After:

REFERENCES

Your paper has undergone first reviews. You received **two** reviews from **two** independent reviewers who don’t know your identity. Their remarks are impartial, focused on the merit and academic quality of your paper. They are renowned professionals with huge experience in publishing and reviewing papers in your field of study. You may disagree with some of their remarks but keep in mind that the reviewers are experts in your chosen topic and they will help you improve your paper. It is normal even for experienced conservators and researchers to receive huge numbers of remarks from reviewers.

The authors are obliged by the publishing agreement to carry out all the changes advised by reviewers within a deadline set by the editor. Refusal or not providing the amended document on time will result in rejecting your paper for publication.

Overall comments:

Author is advised to re-write the full text carefully with the help of English Language Expert and correct the spelling, grammar, punctuation and vocabulary usage errors. Provide English Language Editing certificate.
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>profile of your research activities to distinguish yourself from other researchers with similar names, and make it easier for your colleagues to find your publications. To get LiveDNA, please go to the link: http://livedna.net/form.php</td>
<td>I will submit in cover letter</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Conflict of interest</td>
<td>A statement on conflicts of interest should be included in the manuscript. Either mention: 'none declared', or specify the authors' financial or other interests which should be known to the readers.</td>
</tr>
<tr>
<td>5</td>
<td>Author's contribution</td>
<td>There is a series of questions that will enable you to state the contributions of each author. Each author listed on the manuscript should have a real and concrete contribution to the submission. Every single person who contributed to the manuscript should be listed. More information about authorship can be collected from Editorial Policies.</td>
</tr>
<tr>
<td>6</td>
<td>Significance statement</td>
<td>A statement about the significance of this research work should be included in the manuscript. The significance statement should provide the novelty aspect and significance of this research work with respect to the existing literature and more generally to the society. It should be a short summary which describe what this paper adds to and what was already known. Start this statement with the following words: This study discover the ---------------- that can be beneficial for …………… And the last sentence of this statement could be such as: This study will help the researcher to uncover the critical areas of ------------ that many researchers were not able to explore. Thus a new theory on ------------ may be arrived at. A Model Significance Statement: This study discovers the possible synergistic effect of vitamin E, calcium, and vitamin D combination that can be beneficial for osteoporosis-induced ovariectomized rats. This study will help the researcher to uncover the critical area of postmenopausal bone loss that many researchers were not able to explore. Thus, a new theory on these micronutrients combination, and possibly other combinations, may be arrived at.</td>
</tr>
<tr>
<td>7</td>
<td>Abstract</td>
<td>Which Statistical method was being used to analyze data? Poorly written future recommendation should not be added in conclusion.</td>
</tr>
</tbody>
</table>
Materials and Methods

When the study was carried out?

mention the grading of chemich either analytical grade was used or other

Please indicate both the manufacturer’s name and location (including city, state, and country) for all specialized equipments, kits and reagents used in the experiment

Which Statistical method was being used to analyze data?

Keywords

highlighted keywords are not unique. Provide at least five key words. Key words should be unique and a concise summary of your paper's content and should capture the most important aspects of your paper

References

References must be in English language

References are each must be numbered, ordered sequentially as they appear in the text
Don't forget to make the changes

One of the biggest mistakes made by authors is to respond to all the comments, but forget to actually update the paper. Don't be that person: one way to make sure you remember is to always include line numbers in your changes. That way, you actually have to make the change first before including the line numbers in your response.

How to prepare the revised paper?
1. Before you start editing the document, make sure Tracking changes is enabled! In MS Word go to Review menu and enable ‘Track changes’.
2. You have to address every comment from both reviewers.
3. Mark your every change by adding a comment, excluding typos or similar minor editorial errors.

The comments should include a justification of the change (or lack of change!). In other words, answers to two questions:
- Why I made this change?
- What is the result?

If you decide to explain or justify why you believe your change (or lack of it) adds to the paper, always make sure to clearly indicate parts of paper you refer to (e.g. I mentioned this fact already in the Introduction, p. 1 paragraph 2. I believe bringing up this information there clarifies the issue from the very beginning).

Don't add comments with questions. Bear in mind that:
- Our editors won’t answer them

| figures | Mention the unit in which it was measured
Remove this figure as it caused repetition of the data that is represented in table 1 |
| acknowledgement | Funding source with relevant grant number should be mentioned in the Acknowledgement. |
| conclusion | Poorly written
conclude about the findings so that a reader should have a good idea of what you have investigated and discovered.
future recommendation should be added separately |
| result | recheck it as lowest MIC value is 0 according to above table
0 is not the lowest MIC value because 0 has no bioactive compound activity in killing microbes on the contrast 66 MIC is the lowest one |

Some of the references are incomplete or not formatted properly. Such type of references are not acceptable. Go to http://scialert.net and consult “references” from “guide to author” for having idea of reference categories and formatting
• There will be only two stages of corrections – after major and minor review. There is no space for discussions with the reviewers.

If you remove something, don’t mark it like this. Instead, mark the whole paragraph by adding a comment with explanations of what you did and how it helps to improve the paper.
Summary: Track changes + put a comment with justification on every change you make

b. Cover letter
It is a good academic practice to attach a cover letter to submissions of new and revised papers to journals. Cover letter sent with the paper after major review usually includes:
• Courteous thanks to the editor, etc.
• General confirmation on carrying out all minor editorial corrections (typos etc.)
• Confirmation of implementing the requested changes. Explanations on general character of changes. You may mention 1-3 fundamental changes you made and explain how you dealt with it.
• A list of tasks given by the reviewer with precise indication where in the document you included the changes.
• Other comments those are important to the editor.

List of change after reviewed

1. Title:
 Before: Antimicrobial Profile of *Premna pubescens* Blume and *Centella asiatica* Extracts Against Bacteria and Fungi Pathogens
 After: Antimicrobial Profile of *Premna pubescens*. Blume and *Centella asiatica* Extracts Against Bacteria and Fungi Pathogens

2. Abstract:
 Before:
 Abstract
 Background and Objective: North Sumatera Indonesia has a rich heritage of knowledge on plant based drugs both for use in preventive and curative medicine. *Premna pubescens*.Blume (Buasbuas) has been used to increase the body immunity and endurance. *Centella asiatica* (Pegagan) used for medicinal purposes. Native to China, India and Indonesia recently have had interest in herb for its possible health benefits. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera medicinal plants *P. pubescens* and *C. asiatica* against the important pathogens. To investigate in vitro antimicrobial activity of aerial parts of *P. pubescens* and *C. asiatica*, that popularly used as folk medicines. **Materials and Methods:** The organic solvent plant extracts are tested on the various microorganisms including bacteria and fungi using agardiffusion technique. **Results:** The length of the inhibition zone was measured in millimeters from the edge of the well to the inhibition zone. *P. pubescens* showed significant to moderate activity against (14 mm) *Pseudomonas marginalis* and (21 mm) *Streptococcus mutans* with 100 mg/ml DMSO plant drug concentration. The results of (MICs) values are lowest at 66 and highest at 152 mg/ml for *P. pubescens* whereas 0 to 155 mg/ml for *C. asiatica*. **Conclusion:** The extracts were assessed to validate the potential activity of the medicinal plants against microbes. These studies were conducted to separate the individual componentsof *P. pubescens* and *C. asiatica* using column chromatography to develop alternative synthetic agents. However, it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.
 After:
Background and Objective: North Sumatera Indonesia has a rich heritage of knowledge on plant based drugs both for use in preventive and curative medicine. *Premna pubescens.* Blume (Buasbuas) has been used to increase the body immunity and endurance. *Centella asiatica* (Pegagan) used for medicinal purposes. This research is important performed to find out the antimicrobial capabilities of *P. pubescens* and *C. asiatica* methanol extracts. This research is expected to provide the scientific foundation for the development of plants that are traditionally believed to be efficacious drug. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera medicinal plants *P. pubescens* and *C. asatica* against the important pathogens. **Materials and Methods:** The organic solvent plant extracts are tested on the various microorganisms including bacteria and fungi using agar diffusion technique. The data were analyzed with Anova statistics using SPSS software. **Results:** The length of the inhibition zone was measured in millimeters from the edge of the well to the inhibition zone. *P. pubescens* showed significant to moderate activity against (14 mm) *Pseudomonas marginalis* and (21 mm) *Streptococcus mutans* with 100 mg/ml DMSO plant drug concentration. The results of (MICs) values are lowest at 66 and highest at 152 mg/ml for *P. pubescens* whereas 0 to 155 mg/ml for *C. asiatica*. **Conclusion:** In general, based on the result of this research, it can be said that *P. pubescens* and *C. asatica* plants can be used as antibacterial and antifungal compounds.

3. **Keyword:**
 Before: *Premna pubescens.* Blume, *Centella asiatica*, antimicrobial, MIC, Inhibition zone
 After: *Premna pubescens.* Blume, *Centella asiatica*, antibacterial, antifungal, Minimal inhibitory concentration

4. **Running title**
 Before: -
 After:
 Corresponding Author: Diky Setya Diningrat, Biology Department of Mathematics and Natural Sciences Faculty, Medan State University, Jl. Willem Iskandar Pasar V Medan, North Sumatera, Indonesia, Tel: +6181361362400 email: dikysd@unimed.ac.id

Competing Interest: The authors have declared that no competing exists.

Data Availability: All relevant data are within the paper and its supporting information files.

5. **Citation**
 Before: countries (Rios & Recio, 2005).
 After: countries3.

6. **Before:** North Sumatera Indonesia has a rich heritage of knowledge on plant based drugs both for use in preventive and curative medicine (Khairiah et al., 2017).
 After: North Sumatra is very rich in plants that are believed to have medicinal properties for either prevention or treatment7.

7. **Before:** Because of the side effects and the resistance that pathogenic microorganisms build against antibiotics, many scientists have recently paid attention to extracts and biologically active compounds isolated from plant species used in herbal medicines (Perwitasari et al., 2016; Manaf et al., 2017).
 After: Many scientists have recently paid attention to extracts and biologically active compounds isolated from plant species used in herbal medicines, because of the side effects and the resistance that pathogenic microorganisms build against antibiotics12,16.
8. **Before: Plant materials and extraction:** The whole plants of *P. Pubescens* and *C. asiatica* were collected from Medan State University campus plant collections aged 5-7 years for *P. pubescens* and 5-7 weeks for *C. asiatica* in Medan, North Sumatra, Indonesia. The botanical identification of the collected materials was conducted in herbarium of Bogor botanical garden. The samples were separated and oven dried at 28°C room for 1 week. The samples were grounded into powder form using the grinder. Extraction using Soxhlet apparatus with 95% (v/v) Methanol as solvent for 12 h was performed. The resultant extraction was frozen and dried for 24°C/48 h. Yield of Methanol extracts: 30% (Villalobos et al., 2016).

After: **Plant materials and extraction:** This research project was conducted from July 2016 to November 2016 in Cell and Molecular Biology Laboratory of Medan State University. The whole plants of *P. pubescens* and *C. asiatica* were collected from Medan State University campus plant collections aged 5-7 years for *P. pubescens* and 5-7 weeks for *C. asiatica* in Medan, North Sumatra, Indonesia. The botanical identification of the collected materials was conducted in herbarium of Bogor botanical garden. The samples were separated and oven dried at 28°C room for 1 week. The samples were grounded into powder form using the grinder. Extraction using Soxhlet apparatus (IWAKI SOXHLET-100 IWAKI soxhlet extractor 100 ML) with 95% (v/v) Methanol PA (sigma-adrich) as solvent for 12 h was performed. The resultant extraction was frozen and dried for 24°C/48 h. Yield of Methanol extracts: 30%.

9. **Before:** No mentioned of statistical analysis

After: **Statistical analysis:** All data were statistically analyzed with SPSS software (version 16). One-way analysis of variance (ANOVA) was used to study significant difference among means with significance level at p=0.05.

10. **Before:**

RESULTS

In the study of methanolic extract exhibited different degree of growth inhibition against the tested bacterial and fungal strains. According to Fig. 1a, 2 band Table 1, methanolic extracts of *P. pubescens* and *C. asiatica* exhibited considerable antimicrobial activity against tested microbial strains as shown in Table 1 and figure 1a, b. *Premna pubescens* showed significant to moderate activity against *P. Marginalis* and *S. mutans* with 100 mg/ml DMSO plant drug concentration. *Centella asiatica* was significant against *P. syringae* and moderate against other pathogens *F. oxysporum*, *L. acidophilus*, *S. Salivarius*, *Salivarious* and *S. Aurea*. *Aurea* with 100 mg/ml DMSO.

Table 1. Antimicrobial activity of methanolic extracts

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Premna pubescens, Blume</th>
<th>Centella asiatica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Fungi</td>
<td>Aspergillus</td>
<td>10</td>
</tr>
<tr>
<td>Fungi</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Penicillium expansum</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bacteria (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobacillus acidophilus</td>
</tr>
<tr>
<td>Streptococcus mutans</td>
</tr>
<tr>
<td>Streptococcus salivarius</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bacteria (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas marginalis</td>
</tr>
<tr>
<td>Pseudomonas syringae</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>Xanthomonas campestris</td>
</tr>
</tbody>
</table>

(0) Value indicates no activity. Volume per well: 50μl, Borer size used: 6mm used Plant Methanolic extract concentrations (A = 100, B = 300, and C = 500 mg/ DMSO ml) MIC-Minimum inhibitory concentration.

Fig. 1a. Antimicrobial activity of methanol extracts *Premna pubescens* Blume.
After:

RESULTS

In the study of methanolic extract exhibited different degree of growth inhibition against the tested bacterial and fungal strains. Methanolic extracts of *P. pubescens* and *C. asiatica* exhibited considerable antimicrobial activity against tested microbial strains. *Premna pubescens* showed significant to moderate activity against *P. marginalis* and *S. mutans* with 100 mg/ml DMSO plant drug concentration. *Centella asiatica* is significant against *P. syringae* and moderate against other pathogens *F. oxysporum*, *L. acidophilus*, *S. salivarius* and *S. aureus* with 100 mg/ml DMSO.

Table 1. Antimicrobial activity of methanolic extracts *Premna pubescens*. Blume and *Centella asiatica*

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Premna pubescens. Blume</th>
<th>Centella asiatica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>
DISCUSSION

These extracts are **harmful** and nonphytotoxic; it has been proved that extracts have inhibitory effects on germination and on the viability of fungal spores as well.

CONCLUSIONS

Premna pubescens and Centella asiatica extracts of showed antimicrobial activity against tested pathogens including antibiotic resistant strains. Further studies are being carried out in order to separate the individual components in plant extracts of P. pubescens and C. asiatica using column chromatography to develop biopesticides as alternatives to synthetic agents. However, it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.
Premna pubescens and Centella asiatica extracts of showed antimicrobial activity as antibacterial and anti-fungal against tested pathogens including antibiotic resistant strains. Future recommendation: it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.

13. Before:
ACKNOWLEDGEMENTS

We are thankful for constant encouragement and support from Biology Department, Mathematic and Natural Sciences, BOPTN Grants Funding Medan State University, Post-doctoral grants from the ministry of research, technology and higher education of Indonesia.

After:
ACKNOWLEDGEMENTS

We are thankful for constant encouragement and support from Biology Department, Mathematic and Natural Sciences, BOPTN Grants Funding Medan State University with grant number 178A/UN33.8/KU/2016, Post-doctoral grants from the ministry of research, technology and higher education of Indonesia.

14. Reference format:

Before:

REFERENCES

After:

REFERENCES

Antimicrobial Profile of *Premna pubescens*. Blume and *Centella asiatica* Extracts Against Bacteria and Fungi Pathogens

1Martina Restuati and 1Diky SetyaDiningrat
1Biology Department, Faculty Mathematics and Natural Sciences, Medan State University, Medan 20221, North Sumatera, Indonesia

Running title

Antibacterial and Antifungal Effect of *Premna pubescens*. Blume and *Centella asiatica* Ethanol Extracts

Author contribution

<table>
<thead>
<tr>
<th>Name of the author and e-mail ID</th>
<th>Types of contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Diky Setya Diningrat</td>
<td>Dr. Diky Setya Diningrat researched extract test on microbe</td>
</tr>
<tr>
<td>Dr. Martina Restuati</td>
<td>Dr. Martina Restuati researched extract of bioactive compound from Premna pubescens. Blume and Centella asiatica</td>
</tr>
</tbody>
</table>

Significance statement

This research compared the antibacterial and antifungal effects of the ethanol extracts of *Premna pubescens* and *Centella asiatica*. *Centella asiatica* ethanol extract is more effective as an antifungal than *P. pubescens* where *C. asiatica* effective inhibits *Aspergillus* and *fusarium* growth but *P. pubescens* is more effective in inhibiting *penicillium* growth. *Premna pubescens* is more effective as an antibacterial than *C. asiatica*. Either Gram-positive or Gram-negative bacteria, Premna's efficacy as an antibacterial is much better than *C. asiatica*. As such, it help us in determining the development of bioactive compounds from *C. asiatica* as antifungal and *P. pubescens* as antibacterial.

Abstract

Background and Objective: North Sumatera Indonesia has a rich heritage of knowledge on medicinal plants used for preventive and curative medicine *Premna pubescens*. Blume (Buasbuas) has been used to increase the body immunity and endurance. *Centella asiatica* (Pegagan) is used for medicinal purposes. This research is important to find out the antimicrobial capabilities of *P. pubescens* and *C. asiatica* methanol extracts. This research is expected to provide the scientific foundation for the development of plants that are traditionally believed to be efficacious drug. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera medicinal plants *P. pubescens* and *C. asiatica* against the main pathogens. **Materials and Methods:** The organic solvent plant extracts are tested on the various microorganisms including bacteria and fungi by using agar diffusion technique. The data were analyzed with Anova statistics by using SPSS software. **Results:** The length of the inhibition zone was measured in millimeters from the edge of the well to the inhibition zone. *P. pubescens* showed significant moderate activity against (14 mm) *Pseudomonas marginalis* and (21 mm) *Streptococcus mutans* with 100 mg/ml DMSO plant drug concentration. The results of lowest (MICs) values are at 66 and highest ones are at 152 mg/ml for *P. pubescens* meanwhile...
those of (MICs) values are 0 to 155 mg/ml for *C. asiatica*. **Conclusion:** In general, based on the result of this research, it can be said that *P. pubescens* and *C. asiatica* plants can be used as antibacterial and antifungal compounds.

Keywords: *Premna pubescens*. Blume, *Centella asiatica*, antibacterial, antifungal, Minimal inhibitory concentration

Corresponding Author: Diky Setya Diningrat, Biology Department of Mathematics and Natural Sciences Faculty, Medan State University, Jl. Willem Iskandar Pasar V Medan, North Sumatera, Indonesia, Tel: +6181361362400 email: dikysd@unimed.ac.id
Orcid: 0000-0002-7195-1626
Scopus id: 56716422800
LiveDNA: I attached my registration form

Competing Interest: The authors have declared that no competing exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

The number of medicinal plants is nearly 20,000, this data was according to a study conducted by the World Health Organization (WHO) based on publications on pharmacopoeias and medicinal plants in 91 countries. Nearly 6-7 thousand species of medicinal plants from around about 17-18 thousand flowering plants are known as traditional medicine and officially recognized as medicine system in Indonesia, i.e., North Sumatra, Borneo, Celebes and Papua\(^1,2\).

North Sumatra is very rich in plants that are believed to have medicinal properties for either prevention or treatment\(^3\). Since ancient civilization, the various parts of different plants were used to eliminate pain, control suffering and counteract disease. Plants generally produce many secondary metabolites which constitute an important source of microbicides, pesticides and many pharmaceutical drugs\(^4\). It has also been widely observed and accepted that the medicinal value of plants lies in the bioactive phytocomponents living in the plants\(^5,6\). Much work has been done on ethnomedicinal plants in North Sumatera Indonesia\(^3,6,7,8\). Medicinal plants represent a
rich source of antimicrobial agents. Scientists have recently paid more attention to extracts and biologically active compounds isolated from plant species are used in herbal medicines, because they want to avoid from the antibiotics side effect, i.e., pathogenic microbe resistance.

Premna pubescens. Blume (Family Lamiaceae) is a shrub or tree up to 7-10 m height. It is known by various names like bebuas and buasbuas in Indonesia. In North Sumatera Indonesian traditionally medicinal system, it has been used to increase the body endurance, treat the unwell or catching a cold, help for blood coagulation and overcome for warm infection in children, help to increase breast milk and also increase appetite. Compounds derived from the plant have been found contain alkaloid, flavonoid, saponin, steroid, dan fenolik.

Antimicrobial activity of _Premna pubescens._ Blume was previously screened.

Centella asiatica (Family Mackinlayaceae) commonly names Pegagan, Asiatic Pennywort, North Sumatera Indonesian Pennywort, Luei Gong Gen, Takip, kohol, Antanan, Pegagan, Pegaga, vallaarai Kula kud, Bai Bua Bok and Brahmi. In North Sumatera Indonesia is well-known as “Pegagan” this term is used to improve the mental ability. Antibacterial activity of _C.asiatica_ was previously screened. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera Indonesia medicinal plants _P. pubescens_ and _C. asiatica_ against the main pathogens. In this paper there sults of such studies are reported in order to orient future investigations towards the finding of potent, less toxic to human healt hand safe antimicrobial agents from natural sources.

MATERIALS AND METHODS

Plant materials and extraction: This research project was conducted from July 2016 to November 2016 in Cell and Molecular Biology Laboratory of Medan State University. The
whole plants of *P. pubescens* and *C. asiatica* were collected from Medan State University campus plant collections aged 5-7 years for *P. pubescens* and 5-7 weeks for *C. asiatica* in Medan, North Sumatra, Indonesia. The botanical identification of the collected materials was conducted in herbarium of Bogor botanical garden. The samples were separated and oven dried at 28°C room for 1 week. The samples were grounded into powder form using the grinder. Extraction using Soxhlet apparatus (IWAKI SOXHLET-100 IWAKI soxhlet extractor 100 ML) with 95% (v/v) Methanol PA (Sigma-Aldrich) as solvent for 12 h was performed. The resultant extraction was frozen and dried for 24°C/48 h. Yield of Methanol extracts: 30%17,18.

Test microorganisms: Microbial strains of clinical, plant and aquatic origin i.e. *Asperigillus niger, Pencillium expansum, Fusariumoxysporum, Xanthomonas competestries, Lactobacillus acidophilus, Pseudomonas marginalis, Pseudomonas syringae, Pseudomonas aeruginosa, Streptococcus mutans, Steptococcus salivarious and Staphylococcus aureus* including both fungi and bacteria were procured from Microbial Type Culture Collection (MTCC) Biology Department Medan State University. Active cultures were generated by inoculating a loopful of culture in separate 100 mL nutrient/potato dextrose broths and incubating on a shaker at 37°C overnight. The cells were harvested by centrifuging at 4000 rpm for 5 min, washed with normal saline, spin at 4000 rpm for 5 min again and diluted in normal saline to obtain 5 x 10^5 cfu/mL.

Determination of antimicrobial activity: The antimicrobial assay of both plant crude extracts was conducted by using the agar well-diffusion method. 20 ml of nutrient agar was dispensed into sterile universal bottles. Then they are inoculated with 0.2 ml of cultures and mixed gently as well as poured into sterile petri dishes.. After setting a number 3-cup borer (6 mm diameter) was properly sterilized by flaming and used to make three to five
uniform cups/wells in each petri dish. A drop of molten nutrient agar was used to seal the base of each cup. The cups/wells were filled with 50μl of the extract concentrations of 100, 300 and 500 mg/ ml DMSO and allow diffusion for 45 minutes. The solvents used to reconstitute the extracts were similarly analyzed. The plates were incubated at 37°C for 24 hours for bacteria. The procedure above is also allowed for fungal assays, however media used is not nutrient agar but potato dextrose agar and incubated at 25°C for 48 hours. The zones of inhibition were measured with antibiotic zone scale in mm and the experiment was carried out in duplicates.

Statistical analysis: All data were statistically analyzed with SPSS software (version 16). One-way analysis of variance (ANOVA) was used to study significant difference between means and significance level at p=0.05\(^{17,18}\).

RESULTS

In the study of methanolic extract exhibited different degree of growth inhibition against the tested bacterial and fungal strains. Methanolic extracts of *P. pubescens* and *C. asiatica* exhibited considerable antimicrobial activity against tested microbial strains. *Premna pubescens* showed significant moderate activity against *P. marginalis* and *S. mutans* with 100 mg/ml DMSO medicinal plant concentration. *Centella asiatica* is significant against *P. syringae* and moderate against other pathogens *F. oxysporum*, *L. acidophilus*, *S. salivarius* and *S. aureus* with 100 mg/ml DMSO.

Table 1. Antimicrobial activity of methanolic extracts *Premna pubescens*. Blume and *Centella asiatica*

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Premna pubescens. Blume</th>
<th>Centella asiatica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Penicillium expansum</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Fusarium</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>
oxysporum

<table>
<thead>
<tr>
<th>Bacteria (+)</th>
<th>Lactobacillus acidophilus</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>121</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>156</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Streptococcus mutans</td>
<td>15</td>
<td>20</td>
<td>22</td>
<td>101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Streptococcus salivarius</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>101</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus aureus</td>
<td>22</td>
<td>26</td>
<td>29</td>
<td>67</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>148</td>
</tr>
<tr>
<td>Bacteria (-)</td>
<td>Pseudomonas marginalis</td>
<td>15</td>
<td>14</td>
<td>16</td>
<td>11</td>
<td>11</td>
<td>16</td>
<td>26</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas syringae</td>
<td>11</td>
<td>14</td>
<td>17</td>
<td>19</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas aeruginosa</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Xanthomonas compstries</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>153</td>
</tr>
</tbody>
</table>

(0) Value indicates no activity. Volume per well: 50μl, Borer size used: 6mm used Plant Methanolic extract concentrations (A = 100, B = 300, and C = 500 mg/mL) MIC-Minimum inhibitory concentration

The results of lowest MICs value are at 66 and highest at 153 mg/mL for P. pubescens meanwhile those of highest ones are at 0.155 mg/mL for C. asatica. The variation of antimicrobial activity of our extracts might be due to the distribution of antimicrobial substances which is varied from fraction to fraction of the crude extract. No inhibitions were observed with P. pubescens on P. expansum and C. asatica on P. aeruginosa as well as S. mutans.

DISCUSSION

These extracts has proved that it has inhibitory effects on germination and on the viability of fungal spores as well. Both plant extracts showed moderate good activity against A. niger as a saprophyte in soil causing black mould of onion, garlic and shallot, stem root of Dracaena, root stalk rot of Sansevieria, and boll rot of cotton; spoilage of cashew kernels, dates, figs, vanilla pods as well as dried prune. The effectiveness of the active compounds in plant extracts causes the production of growth inhibition zones that appear as clearas around the wells. However, plant extract was unable to exhibit antibacterial activity against tested bacterial
strains. These bacterial strains may have some kinds of resistance mechanisms e.g. enzymatic inactivation, target sites modification and decrease of intracellular drug accumulation19 or the concentration of the compound used may not be sufficient.

The adverse effects of \textit{P. pubescens} consumption are reported can cause blisters, lesions and eruptions when taken by patients for the treatment of joint pains and gastrointestinal problems. Due to its toxicity, the latex extracted from the stem has traditionally been used to make poison arrows3,11. Several phytochemicals are identified in different parts. \textit{P. pubescens} flowers contain terpenes, multiflorenol, and cyclisadol20. The latex contains caoutchouc, calotropin, calotoxin, calactin, uscharin, trypsin, voruscharin, uzarigenin, syriogenin and proceroside15. Chemical constituents of \textit{P. pubescens} flowers are lupeol, uscharin, proceroside, proceragenin (cardenolide), syriogenin, taraxast-20(30)-en-3-(4-methyl-3-pentenoate), 3-thiazolinecardenolide, gigantin, giganteol, isogiganteol, uscharidin, uzarigenin voruscharin a, calotropeol, 3-epimoretenol, a-lactuceryl acetate and alactuceryl isovalerate21. Root bark of \textit{P. pubescens} contains triterpenes, a new norditerpenyl ester named as calotropterpenyl ester, and two unknown pentacyclic triterpinoids named as calotropursenylacetate and calotropfriedelenylacetate, akundarolisovalerate, mundarol isovalerate and quercetin, 3-rutinoside21. The principal active medicines are asclepin and mudarin22. No inhibition was observed with control which proves that solvents could not act as antimicrobial agents. In almost all tests, crude methanolic extracts showed better inhibition against all the tested bacterial and fungal strains indicating that active ingredients in plant materials could be extracted into methanol. However, the highest antibacterial activity of \textit{P. pubescens} was observed due to the presence of secondary metabolites such as alkaloids, flavonoids and steroids against \textit{S. aureus}. \textit{Pseudomonas aeruginosa are} which is widespread.
in soil, water and sewage can be considered as an indication of their involvement in the natural process of mineralization of organic matter. It has long been a troublesome cause of secondary infections of wound, especially burns, giving rise to blue green pus. It produces meningitis, when introduced by lumber puncture and urinary tract infection when introduced by catheters and instruments or irrigating solutions. *S.aureus* occur harmlessly as a normal flora of the skin and mucous membrane and it is one of the commonest bacterial pathogens encountered in the community causing severe food poisoning or minor skin infections to severe lifethreatening infections. *C. asiatica* methanol extract having strong inhibition activity against *P. aeruginosa and S. aureus* was previously reported.

CONCLUSION

Premna pubescens and Centella asiatica extracts showed antimicrobial activity as anti-bacterial and anti-fungal against tested pathogens including antibiotic resistant strains. Future recommendation: it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.

ACKNOWLEDGEMENTS

We are thankful for constant encouragement and support from Biology Department, Mathematic and Natural Sciences, BOPTN Grants Funding Medan State University with grant number 178A/UN33.8/KU/2016, Post-doctoral grants from the ministry of research, technology and higher education of Indonesia.

REFERENCES

Antimicrobial Profile of *Premna pubescens*. Blume and *Centella asiatica* Extracts Against Bacteria and Fungi Pathogens

1Martina Restuati and 1Diky Setya Diningrat

1Biology Department, Faculty Mathematics and Natural Sciences, Medan State University, Medan 20221, North Sumatera, Indonesia

Running title

Antibacterial and Antifungal Effect of *Premna pubescens*. Blume and *Centella asiatica* Ethanol Extracts

Author contribution

<table>
<thead>
<tr>
<th>Name of the author and e-mail ID</th>
<th>Types of contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Diky Setya Diningrat</td>
<td>Dr. Diky Setya Diningrat researched extract test on microbe</td>
</tr>
<tr>
<td>Dr. Martina Restuati</td>
<td>Dr. Martina Restuati researched extract of bioactive compound from Premna pubescens. Blume and Centella asiatica</td>
</tr>
</tbody>
</table>

Significance statement

The significance of research compares antibacterial and antifungal compounds effect from 2 species of plant commonly believed to be traditional efficacious medicine in north Sumatra.

Abstract

Background and Objective: North Sumatera Indonesia has a rich heritage of knowledge on medicinal plants used for preventive and curative medicine. *Premna pubescens*. Blume (Buasbuas) has been used to increase the body immunity and endurance. *Centella asiatica* (Pegagan) is used for medicinal purposes. This research is important to find out the antimicrobial capabilities of *P. pubescens* and *C. asiatica* methanol extracts. This research is expected to provide the scientific foundation for the development of plants that are traditionally believed to be efficacious drug. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera medicinal plants *P. pubescens* and *C. asiatica* against the main pathogens. **Materials and Methods:** The organic solvent plant extracts are tested on the various microorganisms including bacteria and fungi by using agar diffusion technique. The data were analyzed with Anova statistics by using SPSS software. **Results:** The length of the inhibition zone was measured in millimeters from the edge of the well to the inhibition zone. *P. pubescens* showed significant moderate activity against (14 mm) *Pseudomonas marginalis* and (21 mm) *Streptococcus mutans* with 100 mg/ml DMSO plant drug concentration. The results of lowest (MICs) values are at 66 and highest ones are at 152 mg/ml for *P. pubescens* meanwhile those of (MICs) values are 0 to 155 mg/ml for *C. asiatica*. **Conclusion:** In general, based on the result of this research, it can be said that *P. pubescens* and *C. asiatica* plants can be used as antibacterial and antifungal compounds.
Keywords: *Premna pubescens*. Blume, *Centella asiatica*, antibacterial, antifungal, Minimal inhibitory concentration

Corresponding Author: DikySetyaDiningrat, Biology Department of Mathematics and Natural Sciences Faculty, Medan State University, Jl. Willem IskandarPasar V Medan, North Sumatera, Indonesia, Tel: +6181361362400 email: dikysd@unimed.ac.id
Orcid: 0000-0002-7195-1626
Scopus id:56716422800
LiveDNA: I attached my registration form

Competing Interest: The authors have declared that no competing exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

The number of medicinal plants is nearly 20,000, this data was according to a study conducted by the World Health Organization (WHO) based on publications on pharmacopoeias and medicinal plants in 91 countries. Nearly 6-7 thousand species of medicinal plants from about 17-18 thousand flowering plants are known as traditional medicine and officially recognized as medicine system in Indonesia, i.e., North Sumatra, Borneo, Celebes and Papua. North Sumatra is very rich in plants that are believed to have medicinal properties for either prevention or treatment. Since ancient civilization, the various parts of different plants were used to eliminate pain, control suffering and counteract disease. Plants generally produce many secondary metabolites which constitute an important source of microbicides, pesticides and many pharmaceutical drugs. It has also been widely observed and accepted that the medicinal value of plants lies in the bioactive phytocomponents living in the plants. Much work has been done on ethnomedicinal plants in North Sumatera Indonesia. Medicinal plants represent a rich source of antimicrobial agents. Scientists have recently paid more attention to extracts and biologically active compounds isolated from plant species are used in herbal
medicines, because they want to avoid from the antibiotics side effect, i.e., pathogenic microbe resistance10,13.

Premna pubescens. Blume (Family Lamiaceae) is a shrub or tree up to 7-10 m height. It is known by various names like bebuas and buasbusa in Indonesia13. In North Sumatera Indonesian traditionally medicinal system, it has been used to increase the body endurance, treat the unwell or catching a cold, help for blood coagulation and overcome for warm infection in children, help to increase breast milk14,15 and also increase appetite15,16. Compounds derived from the plant have been found contain alkaloid, flavonoid, saponin, steroid, dan fenolik5,6. Antimicrobial activity of *Premna pubescens.* Blume was previously screened6.

Centella asiatica (Family Mackinlayaceae) commonly known in Indonesia as “Pegagan”. This term is used to improve the mental ability6,8. Antibacterial activity of *C. asiatica* was previously screened9. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera Indonesian medicinal plants *P. pubescens* and *C. asiatica* against the main pathogens. In this paper the results of such studies are reported in order to orient future investigations towards the finding of potent, less toxic to human health and safe antimicrobial agents from natural sources.

MATERIALS AND METHODS

Plant materials and extraction: This research project was conducted from July 2016 to November 2016 in Cell and Molecular Biology Laboratory of Medan State University. The whole plants of *P. pubescens* and *C. asiatica* were collected from Medan State University campus plant collections aged 5-7 years for *P. pubescens* and 5-7 weeks for *C. asiatica* in
Medan, North Sumatra, Indonesia. The botanical identification of the collected materials was conducted in herbarium of Bogor botanical garden. The samples were separated and oven dried at 28°C room for 1 week. The samples were grounded into powder form using the grinder. Extraction using Soxhlet apparatus (IWAKI SOXHLET-100 IWAKI soxhlet extractor 100 ML) with 95% (v/v) Methanol PA (sigma-adrich) as solvent for 12 h was performed. The resultant extraction was frozen and dried for 24°C/48 h. Yield of Methanol extracts: 30% \(^{17,18}\).

Test microorganisms: Microbial strains of clinical, plant and aquatic origin i.e. *Aspergillus niger*, *Pencillium expansum*, *Fusarium oxysporum*, *Xanthomonas campestris*, *Lactobacillus acidophilus*, *Pseudomonas marginalis*, *Pseudomonas syringae*, *Pseudomonas aeruginosa*, *Streptococcus mutans*, *Streptococcus salivarius* and *Staphylococcus aureus* including both fungi and bacteria were procured from Microbial Type Culture Collection (MTCC) Biology Department Medan State University. Active cultures were generated by inoculating a loopful of culture in separate 100 mL nutrient/potato dextrose broths and incubating on a shaker at 37°C overnight. The cells were harvested by centrifuging at 4000 rpm for 5 min, washed with normal saline, spun at 4000 rpm for 5 min again and diluted in normal saline to obtain 5 x 10^5 cfu/mL.

Determination of antimicrobial activity: The antimicrobial assay of both plant crude extracts was conducted by using the agar well-diffusion method. 20 ml of nutrient agar was dispensed into sterile universal bottles. Then they are inoculated with 0.2 ml of cultures and mixed gently as well as poured into sterile petri dishes. After setting a number 3-cup borer (6 mm diameter) was properly sterilized by flaming and used to make three to five uniform cups/wells in each petri dish. A drop of molten nutrient agar was used to seal the base of each cup. The cups/wells were filled with 50μl of the extract concentrations of 100,
300 and 500 mg/ml DMSO and allow diffusion for 45 minutes. The solvents used to reconstitute the extracts were similarly analyzed. The plates were incubated at 37°C for 24 hours for bacteria. The procedure above is also allowed for fungal assays, however media used is not nutrient agar but potato dextrose agar and incubated at 25°C for 48 hours. The zones of inhibition were measured with antibiotic zone scale in mm and the experiment was carried out in duplicates.

Statistical analysis: All data were statistically analyzed with SPSS software (version 16). One-way analysis of variance (ANOVA) was used to study significant difference between means and significance level at p=0.0517,18.

RESULTS

In the study of methanolic extract exhibited different degree of growth inhibition against the tested bacterial and fungal strains. Methanolic extracts of \textit{P. pubescens} and \textit{C. asiatica} exhibited considerable antimicrobial activity against tested microbial strains. \textit{Premna pubescens} showed significant moderate activity against \textit{P. marginalis} and \textit{S. mutans} with 100 mg/ml DMSO medicinal plant concentration. \textit{Centella asiatica} is significant against \textit{P. syringae} and moderate against other pathogens \textit{F. oxysporum}, \textit{L. acidophilus}, \textit{S. salivarious} and \textit{S. aureus} with 100 mg/ml DMSO.

Table 1. Antimicrobial activity of methanolic extracts \textit{Premna pubescens}. Blume and \textit{Centella asiatica}

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>\textit{Premna pubescens}. Blume</th>
<th>\textit{Centella asiatica}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungi</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Penicillium expansum</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Bacteria (+)</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Lactobacillus acidophilus</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Streptococcus salivarius</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td>12 14 16 101 14 16 18 128</td>
<td>22 26 29 67 10 12 13 148</td>
</tr>
</tbody>
</table>

(0) Value indicates no activity. Volume per well: 50μl, Borer size used: 6mm. Plant Methanolic extract concentrations (A=100, B=300, and C=500 mg/ DMSO ml). MIC-Minimum inhibitory concentration.

The results of lowest MICs value are at 66 and highest at 153 mg/ml for *P. pubescens* meanwhile those of highest ones are at 0,155 mg/ml for *C. asatica*. The variation of antimicrobial activity of our extracts might be due to the distribution of antimicrobial substances which is varied from fraction to fraction of the crude extract. No inhibitions were observed with *P. pubescens* on *P. expansum* and *C. asatica* on *P. aeruginosa* as well as *S. mutans*.

DISCUSSION

These extracts has proved that it has inhibitory effects on germination and on the viability of fungal spores as well. Both plant extracts showed moderate good activity against *A. niger* as a saprophyte in soil causing black mould of onion, garlic and shallot, stem root of Dracaena, root stalk rot of Sansevieria, and boll rot of cotton; spoilage of cashew kernels, dates, figs, vanilla pods as well as dried prune. The effectiveness of the active compounds in plant extracts causes the production of growth inhibition zones that appear as clear as around the wells. However, plant extract was unable to exhibit antibacterial activity against tested bacterial strains. These bacterial strains may have some kinds of resistance mechanisms e.g. enzymatic inactivation, target sites modification and decrease of intracellular drug accumulation or the concentration of the compound used may not be sufficient.
The adverse effects of *P. pubescens* consumption are reported can cause blisters, lesions and eruptions when taken by patients for the treatment of joint pains and gastrointestinal problems. Due to its toxicity, the latex extracted from the stem has traditionally been used to make poison arrows. Several phytochemicals are identified in different parts. *P. pubescens* flowers contain terpenes, multiflorenol, and cyclisadol. The latex contains caoutchouc, calotropin, calotoxin, calactin, uscharin, trypsin, voruscharin, uzarigenin, syriogenin and proceroside. Chemical constituents of *P. pubescens* flowers are lupeol, uscharin, proceroside, proceragenin (cardenolide), syriogenin, taraxast-20(30)-en-3-(4-methyl-3-pentenoate), 3-thiazoline cardenolide, gigantin, giganteol, isogiganteol, uscharidin, uzarigenin voruscharin a, calotropeol, 3-epimoretenol, a-lactuceryl acetate and alactuceryl isovalerate. Root bark of *P. pubescens* contains triterpenes, a new norditerpenyl esternamed as calotropterpenyl ester, and two unknown pentacyclic triterpinoids named as calotropursenylacetate and calotropfriedelenylacetate, akundarolisovalerate, mundarol isovalerate and quercetin, 3-rutinoside. The principal active medicines are asclepin and mudarin.

No inhibition was observed with control which proves that solvents could not act as antimicrobial agents. In almost all tests, crude methanolic extracts showed better inhibition against all the tested bacterial and fungal strains indicating that active ingredients in plant materials could be extracted into methanol. However, the highest antibacterial activity of *P. pubescens* was observed due to the presence of secondary metabolites such as alkaloids, flavonoids and steroids against *S. aureus*. *Pseudomonasaeruginosa* which is widespread in soil, water and sewage can be considered as an indication of their involvement in the natural process of mineralization of organic matter. It has long been a troublesome cause of secondary infections of wound, especially burns, giving rise to blue
green pus. It produces meningitis, when introduced by lumber puncture and urinary tract infection when introduced by catheters and instruments or irrigating solutions. S. aureus occur harmlessly as a normal flora of the skin and mucous membrane and it is one of the commonest bacterial pathogens encountered in the community causing severe food poisoning or minor skin infections to severe lifethreatening infections. C. asiatica methanol extract having strong inhibition activity against P. aeruginosa and S. aureus was previously reported.

CONCLUSION

Premna pubescens and Centella asiatica extracts showed antimicrobial activity as anti-bacterial and anti-fungal against tested pathogens including antibiotic resistant strains. Future recommendation: it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.

ACKNOWLEDGEMENTS

We are thankful for constant encouragement and support from Biology Department, Mathematic and Natural Sciences, BOPTN Grants Funding Medan State University with grant number 178A/UN33.8/KU/2016, Post-doctoral grants from the ministry of research, technology and higher education of Indonesia.

REFERENCES

Antimicrobial Profile of *Premna pubescens*. Blume and *Centella asiatica* Extracts Against Bacteria and Fungi Pathogens

1Martina Restuati and 1Diky SetyaDiningrat

Biology Department, Faculty Mathematics and Natural Sciences, Medan State University, Medan 20221, North Sumatera, Indonesia

Running title

Author contribution

<table>
<thead>
<tr>
<th>Name of the author and e-mail ID</th>
<th>Types of contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Diky Setya Diningrat</td>
<td>Dr. Diky Setya Diningrat researched extract test on microbe</td>
</tr>
<tr>
<td>Dr. Martina Restuati</td>
<td>Dr. Martina Restuati researched extract of bioactive compound from Premnapubescens.Blume and Centellaasiatica</td>
</tr>
</tbody>
</table>

Significance statement

The significance of research compares anti-microbial compound from 2 species of plant commonly believed to be traditional efficacious medicine in north Sumatra. *Microbe is used as completely as representing ordinary pathogen which functions in human life and it comes from group of positive and negative Gram bacteria as well as fungus group*

Abstract

Background and Objective: North Sumatera Indonesia has a rich heritage of knowledge on medicinal plants used for preventive and curative medicine. *Premna pubescens*. Blume (Buasbuas) has been used to increase the body immunity and endurance. *Centella asiatica* (Pegagan) is used for medicinal purposes. This research is important to find out the antimicrobial capabilities of *P. pubescens* and *C. asiatica* methanol extracts. This research is expected to provide the scientific foundation for the development of plants that are traditionally believed to be efficacious drug. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera medicinal plants *P. pubescens* and *C. asiatica* against the main pathogens. **Materials and Methods:** The organic solvent plant extracts are tested on the various microorganisms including bacteria and fungi by using agar diffusion technique. The data were analyzed with Anova statistics by using SPSS software. **Results:** The length of the inhibition zone was measured in millimeters from the edge of the well to the inhibition zone. *P. pubescens* showed significant moderate activity against (14 mm) *Pseudomonas marginalis* and (21 mm) *Streptococcus mutans* with 100 mg/ml DMSO plant drug concentration. The results of lowest (MICs) values are at 66 and highest ones are at 152 mg/ml for *P. pubescens* meanwhile those of (MICs) values are 0 to 155 mg/ml for *C. asiatica*. **Conclusion:** In general, based on the result of this research, it can be said that *P. pubescens* and *C. asiatica* plants can be used as antibacterial and antifungal compounds.

Keywords: *Premna pubescens*. Blume, *Centella asiatica*, antibacterial, antifungal, Minimal inhibitory concentration
Corresponding Author: DikySetyaDiningrat, Biology Department of Mathematics and Natural Sciences Faculty, Medan State University, Jl. Willem IskandarPasar V Medan, North Sumatera, Indonesia, Tel: +6181361362400 email: dikysd@unimed.ac.id
Orcid: 0000-0002-7195-1626
Scopus id:56716422800
LiveDNA: I attached my registration form

Competing Interest: The authors have declared that no competing exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

The number of medicinal plants is nearly 20,000, this data was according to a study conducted by the World Health Organization (WHO) based on publications on pharmacopoeias and medicinal plants in 91 countries. Nearly 6-7 thousand species of medicinal plants from around about 17-18 thousand flowering plants are known as traditional medicine and officially recognized as medicine system in Indonesia, i.e., North Sumatra, Borneo, Celebes and Papua.

North Sumatra is very rich in plants that are believed to have medicinal properties for either prevention or treatment. Since ancient civilization, the various parts of different plants were used to eliminate pain, control suffering and counteract disease. Plants generally produce many secondary metabolites which constitute an important source of microbicides, pesticides and many pharmaceutical drugs. It has also been widely observed and accepted that the medicinal value of plants lies in the bioactive phytocomponents living in the plants. Much work has been done on ethnomedicinal plants in North Sumatera Indonesia. Medicinal plants represent a rich source of antimicrobial agents. Scientists have recently paid more attention to extracts and biologically active compounds isolated from plant species are used
in herbal medicines, because they want to avoid from the antibiotics side effect, i.e., pathogenic microbe resistance12,16.

\textit{Premna pubescens.} Blume (Family Lamiaceae) is a shrub or tree up to 7-10 m height. It is known by various names like bebuas and buasbuas in Indonesia10. In North Sumatera Indonesian traditionally medicinal system, it has been used to increase the body endurance, treat the unwell or catching a cold, help for blood coagulation and overcome for warm infection in children, help to increase breast milk8,25 and also increase appetite1,2. Compounds derived from the plant have been found contain alkaloid, flavonoid, saponin, steroid, dan fenolik3,13. Antimicrobial activity of \textit{Premna pubescens}. Blume was previously screened13.

\textit{Centella asiatica}(Family Mackinlayaceae) commonly names Pegagan, Asiatic Pennywort, North Sumatera Indonesian Pennywort, Luei Gong Gen, Takip, kohol, Antanan, Pegagan, Pegaga, vallaarai Kula kud, Bai Bua Bok and Brahmi. In North Sumatera Indonesia is well-known as “Pegagan” this term is used to improve the mental ability5,6. Antibacterial activity of \textit{C.asiatica} was previously screened11. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera Indonesian medicinal plants \textit{P. pubescens} and \textit{C. asiatica} against the main pathogens. In this paper the results of such studies are reported in order to orient future investigations towards the finding of potent, less toxic to human health and safe antimicrobial agents from natural sources.

\textbf{MATERIALS AND METHODS}

\textbf{Plant materials and extraction:} This research project was conducted from July 2016 to November 2016 in Cell and Molecular Biology Laboratory of Medan State University. The whole plants of \textit{P. pubescens} and \textit{C. asiatica} were collected from Medan State University campus plant collections aged 5-7 years for \textit{P. pubescens} and 5-7 weeks for \textit{C. asiatica} in
Medan, North Sumatra, Indonesia. The botanical identification of the collected materials was conducted in herbarium of Bogor botanical garden. The samples were separated and oven dried at 28°C room for 1 week. The samples were grounded into powder form using the grinder. Extraction using Soxhlet apparatus (IWAKI SOXHLET-100 IWAKI soxlet extractor 100 ML) with 95% (v/v) Methanol PA (sigma-adrich) as solvent for 12 h was performed. The resultant extraction was frozen and dried for 24°C/48 h. Yield of Methanol extracts: 30%.

Test microorganisms: Microbial strains of clinical, plant and aquatic origin i.e. *Asperigellusniger, Pencilliumexpansum, Fusariumoxysporum, Xanthomonas compestries, Lactobacillus acidophilus, Pseudomonasmarginalis, Pseudomonas syringae, Pseudomonas aeruginosa, Streptococcus mutans, Steptococcus salivarius* and *Staphylococcus aureus* including both fungi and bacteria were procured from Microbial Type Culture Collection (MTCC) Biology Department Medan State University. Active cultures were generated by inoculating a loopful of culture in separate 100 mL nutrient/potato dextrose broths and incubating on a shaker at 37°C overnight. The cells were harvested by centrifuging at 4000 rpm for 5 min, washed with normal saline, spun at 4000 rpm for 5 min again and diluted in normal saline to obtain 5×10^5 cfu/mL.

Determination of antimicrobial activity: The antimicrobial assay of both plant crude extracts was conducted by using the agar well-diffusion method 20 ml of nutrient agar was dispensed into sterile universal bottles. Then they are inoculated with 0.2 ml of cultures and mixed gently as well as poured into sterile petri dishes. After setting a number 3-cup borer (6 mm diameter) was properly sterilized by flaming and used to make three to five uniform cups/wells in each petri dish. A drop of molten nutrient agar was used to seal the base of each cup. The cups/wells were filled with $50\mu l$ of the extract concentrations of 100,
300 and 500 mg/ml DMSO and allow diffusion for 45 minutes. The solvents used to reconstitute the extracts were similarly analyzed. The plates were incubated at 37°C for 24 hours for bacteria. The procedure above is also allowed for fungal assays, however media used is not nutrient agar but potato dextrose agar and incubated at 25°C for 48 hours. The zones of inhibition were measured with antibiotic zone scale in mm and the experiment was carried out in duplicates.

Statistical analysis: All data were statistically analyzed with SPSS software (version 16). One-way analysis of variance (ANOVA) was used to study significant difference between means and significance level at \(p=0.05 \).

RESULTS

In the study of methanolic extract exhibited different degree of growth inhibition against the tested bacterial and fungal strains. Methanolic extracts of *P. pubescens* and *C. asiatica* exhibited considerable antimicrobial activity against tested microbial strains. *Premnapubescens* showed significant moderate activity against *P. marginalis* and *S. mutans* with 100 mg/ml DMSO medicinal plant concentration. *Centellaasiatica* is significant against *P. syringae* and moderate against other pathogens *F. oxysporum, L. acidophilus, S. salivarious* and *S. aureus* with 100 mg/ml DMSO.

Table 1. Antimicrobial activity of methanolic extracts *Premna pubescens, Blume* and *Centella asiatica*

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Premna pubescens, Blume</th>
<th>Centella asiatica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Penicillium expansum</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Bacteria (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus acidophilus</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Bacteria (-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Streptococcus salivarious</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Pseudomonas marginalis</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Pseudomonas syringae</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Xanthomonas compostries</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

(0) Value indicates no activity. Volume per well: 50μl, Borer size used: 6mm used Plant Methanolic extract concentrations (A = 100, B = 300, and C = 500 mg/ DMSO ml) MIC-Minimum inhibitory concentration

The results of lowest MICs value are at 66 and highest at 153 mg/ml for *P. pubescens* meanwhile those of highest ones are at 0,155 mg/ml for *C. asatica*. The variation of antimicrobial activity of our extracts might be due to the distribution of antimicrobial substances which is varied from fraction to fraction of the crude extract. No inhibitions were observed with *P. pubescens* on *P. expansum* and *C. asatica* on *P. aeruginosa* as well as *S. mutans*.

DISCUSSION

These extracts has proved that it has inhibitory effects on germination and on the viability of fungal spores as well. Both plant extracts showed moderate good activity against *A. niger* as a saprophyte in soil causing black mould of onion, garlic and shallot, stem root of *Dracaena*, root stalk rot of *Sansevieria*, and boll rot of cotton; spoilage of cashew kernels, dates, figs, vanilla pods as well as dried prune. The effectiveness of the active compounds in plant extracts causes the production of growth inhibition zones that appear as clear areas around the wells. However, plant extract was unable to exhibit antibacterial activity against tested bacterial strains. These bacterial strains may have some kinds of resistance mechanisms e.g. enzymatic inactivation, target sites modification and decrease of intracellular drug accumulation or the concentration of the compound used may not be sufficient.
The adverse effects of *P. pubescens* consumption are reported can cause blisters, lesions and eruptions when taken by patients for the treatment of joint pains and gastrointestinal problems. Due to its toxicity, the latex extracted from the stem has traditionally been used to make poison arrows \(^7,14\). Several phytochemicals are identified in different parts. *P. pubescens* flowers contain terpenes, multiflorenol, and cyclisado122. The latex contains caoutchouc, calotropin, calotoxin, calactin, uscharin, trypsin, voruscharin, uzarigenin, syriogenin and proceroside\(^2\).

Chemical constituents of *P. pubescens* flowers are lupeol, uscharin, proceroside, proceragenin (cardenolide), syriogenin, taraxast-20(30)-en-3-(4-methyl-3-pentenoate), 3-thiazoline cardenolide, gigantin, giganteol, isogiganteol, uscharidin, uzarigenin voruscharin a, calotropeol, 3-epimoretenol, a-lactuceryl acetate and alactuceryl isovalerate\(^24\). Root bark of *P. pubescens* contains triterpenes, a new norditerpenyl ester named as calotropterpenyl ester, and two unknown pentacyclic triterpinoids named as calotropursenylacetate and calotropfriedelenylacetate, akundarolisovalerate, mundarol isovalerate and quercetin, 3-rutinoside\(^24\). The principal active medicines are asclepin and mudarin\(^9\).

No inhibition was observed with control which proves that solvents could not act as antimicrobial agents. In almost all tests, crude methanolic extracts showed better inhibition against all the tested bacterial and fungal strains indicating that active ingredients in plant materials could be extracted into methanol. However, the highest antibacterial activity of *P. pubescens* was observed due to the presence of secondary metabolites such as alkaloids, flavonoids and steroids against *S. aureus, Pseudomonas aeruginosa* which is widespread in soil, water and sewage can be considered as an indication of their involvement in the natural process of mineralization of organic matter. It has long been a troublesome cause of secondary infections of wound, especially burns, giving rise to blue
green pus. It produces meningitis, when introduced by lumber puncture and urinary tract infection when introduced by catheters and instruments or irrigating solutions. \(S.\text{aureus} \) occur harmlessly as a normal flora of the skin and mucous membrane and it is one of the commonest bacterial pathogens encountered in the community causing severe food poisoning or minor skin infections to severe lifethreatening infections. \(C. \text{asiatica} \) methanol extract having strong inhibition activity against \(P. \text{aeruginosa} \) and \(S. \text{aureus} \) was previously reported.

CONCLUSION

Premna pubescens and Centella asiatica extracts showed antimicrobial activity as anti-bacterial and anti-fungal against tested pathogens including antibiotic resistant strains. Future recommendation: it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.

ACKNOWLEDGEMENTS

We are thankful for constant encouragement and support from Biology Department, Mathematic and Natural Sciences, BOPTN Grants Funding Medan State University with grant number 178A/UN33.8/KU/2016, Post-doctoral grants from the ministry of research, technology and higher education of Indonesia.

REFERENCES

elevated vancomycin minimum inhibitory concentrations within the susceptible range. *Infection and drug resistance*, 9, p.87.

Antimicrobial Profile of *Premna pubescens*. Blume and *Centella asiatica* Extracts Against Bacteria and Fungi Pathogens

Martina Restuati and Diky Setya Diningrat
Biology Department of Mathematics and Natural Sciences Faculty, Medan State University, North Sumatera, Indonesia

Running title

Author contribution

<table>
<thead>
<tr>
<th>Name of the author and e-mail ID</th>
<th>Types of contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Diky Setya Diningrat</td>
<td>Dr. Diky Setya Diningrat researched extract test on microbe</td>
</tr>
<tr>
<td>Dr. Martina Restuati</td>
<td>Dr. Martina Restuati researched extract of bioactive compound from Premna pubescens. Blume and Centella asiatica</td>
</tr>
</tbody>
</table>

Significance statement

This research identified extract activity of Premna and Centella on microbe however it is not new research, this covers previous research published by the same author, but the latest and different one is the following:

1. kinds of microbe are equated
2. Conducting comparison activity of bioactive compound between Premna and Centella on the same microbe.

Therefore, The findings can be used as reference and development of bioactive compound on pharmacy industry

It compares anti-microbial compound from 2 species of plant commonly believed to be traditional efficacious drug in north Sumatra. Microbe is used as completely as representing ordinary pathogen which functions in human life and it comes from group of positive and negative Gram bacteria as well as fungus group

Abstract

Background and Objective: North Sumatera Indonesia has a rich heritage of knowledge on medicinal plants used for preventive and curative medicine. *Premna pubescens*. Blume (Buasbuas) has been used to increase the body immunity and endurance. *Centella asiatica* (Pegagan) is used for medicinal purposes. This research is important to find out the antimicrobial capabilities of *P. pubescens* and *C. asiatica* methanol extracts. This research is expected to provide the scientific foundation for the development of plants that are traditionally believed to be efficacious drug. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera medicinal plants *P. pubescens* and *C. asiatica* against the main pathogens.

Materials and Methods: The organic solvent plant extracts are tested on the various microorganisms including bacteria and fungi by using agar diffusion technique. The data were analyzed with Anova statistics by using SPSS software.

Results: The length of the inhibition zone was measured in millimeters from the edge of the well to the inhibition zone. *P. pubescens* showed
significant moderate activity against (14 mm) *Pseudomonas marginalis* and (21 mm) *Streptococcus mutans* with 100 mg/ml DMSO plant drug concentration. The results of lowest (MICs) values are at 66 and highest ones are at 152 mg/ml for *P. pubescens* meanwhile those of (MICs) values are 0 to 155 mg/ml for *C. asiatica*. **Conclusion:** In general, based on the result of this research, it can be said that *P. pubescens* and *C. asiatica* plants can be used as antibacterial and antifungal compounds.

Keywords: *Premna pubescens*, Blume, *Centella asiatica*, antibacterial, antifungal, Minimal inhibitory concentration

Corresponding Author: Diky Setya Diningrat, Biology Department of Mathematics and Natural Sciences Faculty, Medan State University, Jl. Willem Iskandar Pasar V Medan, North Sumatera, Indonesia, Tel: +6181361362400 email: dikysd@unimed.ac.id

Competing Interest: The authors have declared that no competing exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

The number of medicinal plants is nearly 20,000, this data was according to a study conducted by the World Health Organization (WHO) based on publications on pharmacopoeias and medicinal plants in 91 countries. Nearly 6-7 thousand species of medicinal plants from around about 17-18 thousand flowering plants are known as traditional medicine and officially recognized as medicine system in Indonesia, i.e., North Sumatra, Borneo, Celebes and Papua.

North Sumatra is very rich in plants that are believed to have medicinal properties for either prevention or treatment. Since ancient civilization, the various parts of different plants were used to eliminate pain, control suffering and counteract disease. Plants generally produce many secondary metabolites which constitute an important source of microbicides, pesticides and many pharmaceutical drugs. It has also been widely observed and accepted that the medicinal value of plants lies in the bioactive phytocomponents living in the plants. Much work has been done on ethnomedicinal plants in North Sumatera Indonesia. Medicinal plants represent a rich source of antimicrobial agents.
attention to extracts and biologically active compounds isolated from plant species are used in herbal medicines, because they want to avoid from the antibiotics side effect, i.e., pathogenic microbe resistance12,16.

Premna pubescens. Blume (Family Lamiaceae) is a shrub or tree up to 7-10 m height. It is known by various names like bebuas and buasbuas in Indonesia10. In North Sumatera Indonesian traditionally medicinal system, it has been used to increase the body endurance, treat the unwell or catching a cold, help for blood coagulation and overcome for warm infection in children, help to increase breast milk8,25 and also increase appetite1,2. Compounds derived from the plant have been found contain alkaloid, flavonoid, saponin, steroid, dan fenolik3,13. Antimicrobial activity of *Premna pubescens.* Blume was previously screened13.

Centella asiatica (Family Mackinlayaceae) commonly names Pegagan, Asiatic Pennywort, North Sumatera Indonesian Pennywort, Luei Gong Gen, Takip, kohol, Antanan, Pegagan, Pegaga, vallaarai Kula kud, Bai Bua Bok and Brahmi. In North Sumatera Indonesia is well-known as “Pegagan” this term is used to improve the mental ability5,6. Antibacterial activity of *C. asiatica* was previously screened11. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera Indonesia medicinal plants *P. pubescens* and *C. asiatica* against the main pathogens. In this paper the results of such studies are reported in order to orient future investigations towards the finding of potent, less toxic to human health and safe antimicrobial agents from natural sources.

MATERIALS AND METHODS

Plant materials and extraction: This research project was conducted from July 2016 to November 2016 in Cell and Molecular Biology Laboratory of Medan State University. The whole plants of *P. pubescens* and *C. asiatica* were collected from Medan State University campus plant
collections aged 5-7 years for *P. pubescens* and 5-7 weeks for *C. asiatica* in Medan, North Sumatra, Indonesia. The botanical identification of the collected materials was conducted in herbarium of Bogor botanical garden. The samples were separated and oven dried at 28°C room for 1 week. The samples were grounded into powder form using the grinder. Extraction using Soxhlet apparatus (IWAKI SOXHLET-100 IWAKI soxhlet extractor 100 ML) with 95% (v/v) Methanol PA (sigma-adrich) as solvent for 12 h was performed. The resultant extraction was frozen and dried for 24°C/48 h. Yield of Methanol extracts: 30%\(^2\).

Test microorganisms: Microbial strains of clinical, plant and aquatic origin, *e.g.* *Asperigellus niger*, *Pencillium expansum*, *Fusarium oxysporum*, *Xanthomonas compestries*, *Lactobacillus acidophilus*, *Pseudomonas marginalis*, *Pseudomonas syringae*, *Pseudomonas aeruginosa*, *Streptococcus mutans*, *Strectococcus salivarious* and *Staphylococcus aureus* including both fungi and bacteria were procured from Microbial Type Culture Collection (MTCC) Biology Department Medan State University. Active cultures were generated by inoculating a loopful of culture in separate 100 mL nutrient/potato dextrose broths and incubating on a shaker at 37°C overnight. The cells were harvested by centrifuging at 4000 rpm for 5 min, washed with normal saline, spun at 4000 rpm for 5 min again and diluted in normal saline to obtain \(5 \times 10^5\) cfu/mL.

Determination of antimicrobial activity: The antimicrobial assay of both plant crude extracts was conducted by using the agar well-diffusion method. 20 ml of nutrient agar was dispensed into sterile universal bottles. Then they are inoculated with 0.2 ml of cultures and mixed gently as well as poured into sterile petri dishes. After setting a number 3-cup borer (6 mm diameter) was properly sterilized by flaming and used to make three to five uniform cups/wells in each petri dish. A drop of molten nutrient agar was used to seal the base of
each cup. The cups/wells were filled with 50μl of the extract concentrations of 100, 300 and 500 mg/ml DMSO and allow diffusion for 45 minutes. The solvents used to reconstitute the extracts were similarly analyzed. The plates were incubated at 37°C for 24 hours for bacteria. The procedure above is also allowed for fungal assays, however media used is not nutrient agar but potato dextrose agar and incubated at 25°C for 48 hours. The zones of inhibition were measured with antibiotic zone scale in mm and the experiment was carried out in duplicates.

Statistical analysis: All data were statistically analyzed with SPSS software (version 16). One-way analysis of variance (ANOVA) was used to study significant difference between means and significance level at p=0.05\(^1,23\).

RESULTS

In the study of methanolic extract exhibited different degree of growth inhibition against the tested bacterial and fungal strains. Methanolic extracts of *P. pubescens* and *C. asiatica* exhibited considerable antimicrobial activity against tested microbial strains. *Premna pubescens* showed significant moderate activity against *P. marginalis* and *S. mutans* with 100 mg/ml DMSO medicinal plant concentration. *Centella asiatica* is significant against *P. syringae* and moderate against other pathogens *F. oxysporum*, *L. acidophilus*, *S. salivarious* and *S. aureus* with 100 mg/ml DMSO.

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>MIC (mg/ml)</th>
<th>MIC (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Penicillium expansum</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Bacteria (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus acidophilus</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Bacteria (-)</td>
<td>Steptococcus salivarious</td>
<td>12</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>Staphylococcus aureus</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas marginalis</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas syringae</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas aeruginosa</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Xanthomonas compestries</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>153</td>
</tr>
</tbody>
</table>

|(0) Value indicates no activity, Volume per well: 50μl, Borer size used: 6mm, used Plant Methanolic extract concentrations (A =100, B=300, and C=500 mg/ DMSO ml) MIC-Minimum inhibitory concentration

The results of lowest MICs value are at 66 and highest at 153 mg/ml for *P. pubescens* meanwhile those of highest ones are at 0,155 mg/ml for *C. asatica*. The variation of antimicrobial activity of our extracts might be due to the distribution of antimicrobial substances which is varied from fraction to fraction of the crude extract. No inhibitions were observed with *P. pubescens* on *P. expansum* and *C. asatica* on *P. aeruginosa* as well as *S. mutans*.

DISCUSSION

These extracts has proved that it has inhibitory effects on germination and on the viability of fungal spores as well. Both plant extracts showed moderate good activity against A. niger as a saprophyte in soil causing black mould of onion, garlic and shallot, stem root of Dracaena, root stalk rot of Sansevieria, and boll rot of cotton; spoilage of cashew kernels, dates, figs, vanilla pods as well as dried prune. The effectiveness of the active compounds in plant extracts causes the production of growth inhibition zones that appear as clear as around the wells. However, plant extract was unable to exhibit antibacterial activity against tested bacterial strains. These bacterial strains may have some kinds of resistance mechanisms e.g. enzymatic inactivation, target sites
modification and decrease of intracellular drug accumulation or the concentration of the compound used may not be sufficient.

The adverse effects of *P. pubescens* consumption are reported can cause blisters, lesions and eruptions when taken by patients for the treatment of joint pains and gastrointestinal problems. Due to its toxicity, the latex extracted from the stem has traditionally been used to make poison arrows. Several phytochemicals are identified in different parts. *P. pubescens* flowers contain terpenes, multiflorenol, and cyclisadol. The latex contains caoutchouc, calotropin, calotoxin, calactin, uscharin, trypsin, voruscharin, uzarigenin, syriogenin and proceroside. Chemical constituents of *P. pubescens* flowers are lupeol, uscharin, proceroside, proceragenin (cardenolide), syriogenin, taraxast-20 (30)-en-3-(4-methyl-3-pentenoate), 3-thiazoline cardenolide, gigantin, giganteol, isogiganteol, uscharidin, uzarigenin voruscharin a, calotropeol, 3-epimoretenol, a-lactuceryl acetate and alactuceryl isovalerate. Root bark of *P. pubescens* contains triterpenes, a new norditerpenyl ester named as calotropterpenyl ester, and two unknown pentacyclic triterpinoids named as calotropursenyl acetate and calotropfriedelenyl acetate, akundarol isovalerate, mundarol isovalerate and quercetin, 3-rutinoside. The principal active medicines are asclepin and mudarin.

No inhibition was observed with control which proves that solvents could not act as antimicrobial agents. In almost all tests, crude methanolic extracts showed better inhibition against all the tested bacterial and fungal strains indicating that active ingredients in plant materials could be extracted into methanol. However, the highest antibacterial activity of *P. pubescens* was observed due to the presence of secondary metabolites such as alkaloids, flavonoids and steroids against *S. aureus, Pseudomonas aeruginosa* which is wide-spread in soil, water and sewage can be considered as an indication of their involvement in the natural
process of mineralization of organic matter. It has long been a troublesome cause of secondary
infections of wound, especially burns, giving rise to blue green pus. It produces meningitis,
when introduced by lumber puncture and urinary tract infection when introduced by catheters
and instruments or irrigating solutions. S. aureus occur harmlessly as a normal flora of the
skin and mucous membrane and it is one of the commonest bacterial pathogens encountered in
the community causing severe food poisoning or minor skin infections to severe life
threatening infections. C. asiatica methanol extract having strong inhibition activity against P.
aeruginosa and S. aureus was previously reported.

CONCLUSION
Premna pubescens and Centella asiatica extracts showed antimicrobial activity as anti-bacterial
and anti-fungal against tested pathogens including antibiotic resistant strains. Future
recommendation: it is necessary to determine the toxicity of the active constituents, their side
effects and pharmaco-kinetic properties.

ACKNOWLEDGEMENTS
We are thankful for constant encouragement and support from Biology Department, Mathematic
and Natural Sciences, BOPTN Grants Funding Medan State University with grant number
178A/UN33.8/KU/2016, Post-doctoral grants from the ministry of research, technology and
higher education of Indonesia.

REFERENCES
2. Bezerra, C.F., Mota, É.F., Silva, A.C.M., Tomé, A.R., Silva, M.Z., de Brito, D., Porfirio,
C.T., Oliveira, A.C., Lima-Filho, J.V. & Ramos, M.V., 2017. Latex proteins from Calotropis
procera: Toxicity and immunological tolerance revisited. Chemico-Biological Interactions.

vancomycin minimum inhibitory concentrations within the susceptible range. *Infection and drug resistance, 9*, p.87.

Antimicrobial Profile of *Premna pubescens*. Blume and *Centella asiatica* Extracts Against Bacteria and Fungi Pathogens

Martina Restuati and Diky Setya Dinatingrat
Biology Department of Mathematics and Natural Sciences Faculty, Medan State University, North Sumatera, Indonesia

Abstract

Background and Objective: North Sumatera Indonesia has a rich heritage of knowledge on medicinal plants used for preventive and curative medicine. *Premna pubescens*. Blume (Buasbuas) has been used to increase the body immunity and endurance. *Centella asiatica* (Pegagan) is used for medicinal purposes. This research is important to find out the antimicrobial capabilities of *P. pubescens* and *C. asiatica* methanol extracts. This research is expected to provide the scientific foundation for the development of plants that are traditionally believed to be efficacious drug. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera medicinal plants *P. pubescens* and *C. asiatica* against the main pathogens. **Materials and Methods:** The organic solvent plant extracts are tested on the various microorganisms including bacteria and fungi by using agar diffusion technique. The data were analyzed with Anova statistics by using SPSS software. **Results:** The length of the inhibition zone was measured in millimeters from the edge of the well to the inhibition zone. *P. pubescens* showed significant moderate activity against (14 mm) *Pseudomonas marginalis* and (21 mm) *Streptococcus mutans* with 100 mg/ml DMSO plant drug concentration. The results of lowest (MICs) values are at 66 and highest ones are at 152 mg/ml for *P. pubescens* meanwhile those of (MICs) values are 0 to 155 mg/ml for *C. asiatica*. **Conclusion:** In general, based on the result of this research, it can be said that *P. pubescens* and *C. asiatica* plants can be used as antibacterial and antifungal compounds.

Keywords: *Premna pubescens*. Blume, *Centella asiatica*, antibacterial, antifungal, Minimal inhibitory concentration

Corresponding Author: Diky Setya Dinatingrat, Biology Department of Mathematics and Natural Sciences Faculty, Medan State University, Jl. Willem Iskandar Pasar V Medan, North Sumatera, Indonesia, Tel: +6181361362400 email: dikysd@unimed.ac.id

Competing Interest: The authors have declared that no competing exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

The number of medicinal plants is nearly 20,000, this data was according to a study conducted by the World Health Organization (WHO) based on publications on pharmacopoeias and medicinal plants in 91 countries\(^{18}\). Nearly 6-7 thousand species of medicinal plants from around
about 17-18 thousand flowering plants are known as traditional medicine and officially recognized as medicine system in Indonesia, i.e., North Sumatra, Borneo, Celebes and Papua. North Sumatra is very rich in plants that are believed to have medicinal properties for either prevention or treatment. Since ancient civilization, the various parts of different plants were used to eliminate pain, control suffering and counteract disease. Plants generally produce many secondary metabolites which constitute an important source of microbicides, pesticides and many pharmaceutical drugs. It has also been widely observed and accepted that the medicinal value of plants lies in the bioactive phytocomponents living in the plants. Much work has been done on ethnomedicinal plants in North Sumatera Indonesia. Medicinal plants represent a rich source of antimicrobial agents. Scientists have recently paid more attention to extracts and biologically active compounds isolated from plant species are used in herbal medicines, because they want to avoid from the antibiotics side effect, i.e, pathogenic microbe resistance.

Premna pubescens. Blume (Family Lamiaceae) is a shrub or tree up to 7-10 m height. It is known by various names like bebuas and buasbuas in Indonesia. In North Sumatera Indonesian traditionally medicinal system, it has been used to increase the body endurance, treat the unwell or catching a cold, help for blood coagulation and overcome for warm infection in children, help to increase breast milk and also increase appetite. Compounds derived from the plant have been found contain alkaloid, flavonoid, saponin, steroid, dan fenolik. Antimicrobial activity of Premna pubescens. Blume was previously screened.

Centella asiatica (Family Mackinlayaceae) commonly names Pegagan, Asiatic Pennywort, North Sumatera Indonesian Pennywort, Luei Gong Gen, Takip, kohol, Antanan, Pegagan,
Pegaga, vallaarai, Kula kud, Bai Bua Bok, and Brahmi. In North Sumatera Indonesia is well-known as “Pegagan” this term is used to improve the mental ability. Antibacterial activity of C. asiatica was previously screened. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera Indonesia medicinal plants P. pubescens and C. asiatica against the main pathogens. In this paper the results of such studies are reported in order to orient future investigations towards the finding of potent, less toxic to human health and safe antimicrobial agents from natural sources.

MATERIALS AND METHODS

Plant materials and extraction: This research project was conducted from July 2016 to November 2016 in Cell and Molecular Biology Laboratory of Medan State University. The whole plants of P. pubescens and C. asiatica were collected from Medan State University campus plant collections aged 5-7 years for P. pubescens and 5-7 weeks for C. asiatica in Medan, North Sumatra, Indonesia. The botanical identification of the collected materials was conducted in herbarium of Bogor botanical garden. The samples were separated and oven dried at 28°C room for 1 week. The samples were grounded into powder form using the grinder. Extraction using Soxhlet apparatus (IWAKI SOXHLET-100 IWAKI soxhlet extractor 100 ML) with 95% (v/v) Methanol PA (sigma-adrich) as solvent for 12 h was performed. The resultant extraction was frozen and dried for 24°C/48 h. Yield of Methanol extracts: 30%.

Test microorganisms: Microbial strains of clinical, plant and aquatic origin i.e. Asperigellus niger, Pencillium expansum, Fusarium oxysporum, Xanthomonas compestries, Lactobacillus acidophilus, Pseudomonas marginalis, Pseudomonas syringae, Pseudomonas aeruginosa, Streptococcus mutans, Steptococcus salivarious and Staphylococcus aureus including both fungi and bacteria were procured from Microbial Type Culture Collection...
Active cultures were generated by inoculating a loopful of culture in separate 100 mL nutrient/potato dextrose broths and incubating on a shaker at 37°C overnight. The cells were harvested by centrifuging at 4000 rpm for 5 min, washed with normal saline, spun at 4000 rpm for 5 min again and diluted in normal saline to obtain 5×10^5 cfu/mL.

Determination of antimicrobial activity: The antimicrobial assay of both plant crude extracts was conducted by using the agar well-diffusion method (Balouiri et al., 2016). 20 ml of nutrient agar was dispensed into sterile universal bottles. Then they are inoculated with 0.2 ml of cultures and mixed gently as well as poured into sterile petri dishes. After setting a number 3-cup borer (6 mm diameter) was properly sterilized by flaming and used to make three to five uniform cups/wells in each petri dish. A drop of molten nutrient agar was used to seal the base of each cup. The cups/wells were filled with 50μl of the extract concentrations of 100, 300 and 500 mg/ml DMSO and allow diffusion for 45 minutes. The solvents used to reconstitute the extracts were similarly analyzed. The plates were incubated at 37°C for 24 hours for bacteria. The procedure above is also allowed for fungal assays, however media used is not nutrient agar but potato dextrose agar and incubated at 25°C for 48 hours. The zones of inhibition were measured with antibiotic zone scale in mm and the experiment was carried out in duplicates.

Statistical analysis: All data were statistically analyzed with SPSS software (version 16). One-way analysis of variance (ANOVA) was used to study significant difference between means and significance level at $p=0.05$.

RESULTS

In the study of methanolic extract exhibited different degree of growth inhibition against the tested bacterial and fungal strains. Methanolic extracts of *P. pubescens* and *C. asatica*
exhibited considerable antimicrobial activity against tested microbial strains. *Premna pubescens* showed significant moderate activity against *P. marginalis* and *S. mutans* with 100 mg/ml DMSO medicinal plant concentration. *Centella asiatica* is significant against *P. syringae* and moderate against other pathogens *F. oxysporum*, *L. acidophilus*, *S. salivarious* and *S. aureus* with 100 mg/ml DMSO.

Table 1. Antimicrobial activity of methanolic extracts *Premna pubescens*. Blume and *Centella asiatica*

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Premna pubescens. Blume</th>
<th>Centella asiatica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Penicillium expansum</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Bacteria (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus acidophilus</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Streptococcus salivarious</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Bacteria (-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas marginalis</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Pseudomonas syringae</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Xanthomonas campestris</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

(0) Value indicates no activity. Volume per well: 50μl, Borer size used: 6mm used Plant Methanolic extract concentrations (A =100, B=300, and C=500 mg/ DMSO ml) MIC-Minimum inhibitory concentration

The results of lowest MICs value are at 66 and highest at 152 mg/ml for *P. pubescens* meanwhile those of highest ones are at 0,155 mg/ml for *C. asiatica*. The variation of antimicrobial activity of our extracts might be due to the distribution of antimicrobial substances which is varied from fraction to fraction of the crude extract. No inhibitions
were observed with *P. pubescens* on *P. expansum* and *C. asatica* on *P. aeruginosa* as well as *S. mutans*.

DISCUSSION

These extracts has proved that it has inhibitory effects on germination and on the viability of fungal spores as well. Both plant extracts showed moderate good activity against *A. niger* as a saprophyte in soil causing black mould of onion, garlic and shallot, stem root of *Dracaena*, root stalk rot of *Sansevieria*, and boll rot of cotton; spoilage of cashew kernels, dates, figs, vanilla pods as well as dried prune. The effectiveness of the active compounds in plant extracts causes the production of growth inhibition zones that appear as clear as around the wells. However, plant extract was unable to exhibit antibacterial activity against tested bacterial strains. These bacterial strains may have some kinds of resistance mechanisms e.g. enzymatic inactivation, target sites modification and decrease of intracellular drug accumulation or the concentration of the compound used may not be sufficient.

The adverse effects of *P. pubescens* consumption are reported can cause blisters, lesions and eruptions when taken by patients for the treatment of joint pains and gastrointestinal problems. Due to its toxicity, the latex extracted from the stem has traditionally been used to make poison arrows. Several phytochemicals are identified in different parts. *P. pubescens* flowers contain terpenes, multiflorenol, and cyclisadol. The latex contains caoutchouc, calotropin, calotoxin, calactin, uscharin, trypsin, voruscharin, uzarigenin, syriogenin and proceroside. Chemical constituents of *P. pubescens* flowers are lupeol, uscharin, proceroside, proceragenin (cardenolide), syriogenin, taraxast-20 (30)-en-3-(4-methyl-3-pentenoate), 3-thiazoline cardenolide, gigantin, giganteol, isogiganteol, uscharidin, uzarigenin voruscharin a, calotropeol, 3-epimoretenol, a-lactuceryl acetate and alactuceryl isovalerate. Root bark of *P.
pubescens contains triterpenes, a new norditerpenyl ester named as calotropterpenyl ester, and two unknown pentacyclic triterpinoids named as calotropursenyl acetate and calotropfriedelenyl acetate, akundarol isovalerate, mundarol isovalerate and quercetin, 3-rutinoside. The principal active medicines are asclepin and mudarin.

No inhibition was observed with control which proves that solvents could not act as antimicrobial agents. In almost all tests, crude methanolic extracts showed better inhibition against all the tested bacterial and fungal strains indicating that active ingredients in plant materials could be extracted into methanol. However, the highest antibacterial activity of *P. pubescens* was observed due to the presence of secondary metabolites such as alkaloids, flavonoids and steroids against *S. aureus*. *Pseudomonas aeruginosa* which is wide-spread in soil, water and sewage can be considered as an indication of their involvement in the natural process of mineralization of organic matter. It has long been a troublesome cause of secondary infections of wound, especially burns, giving rise to blue green pus. It produces meningitis, when introduced by lumbar puncture and urinary tract infection when introduced by catheters and instruments or irrigating solutions. *S. aureus* occur harmlessly as a normal flora of the skin and mucous membrane and it is one of the commonest bacterial pathogens encountered in the community causing severe food poisoning or minor skin infections to severe life threatening infections. *C. asiatica* methanol extract having strong inhibition activity against *P. aeruginosa* and *S. aureus* was previously reported.

CONCLUSION

Premna pubescens and *Centella asiatica* extracts showed antimicrobial activity as antibacterial and anti-fungal against tested pathogens including antibiotic resistant strains. Future
recommendation: it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.

ACKNOWLEDGEMENTS

We are thankful for constant encouragement and support from Biology Department, Mathematic and Natural Sciences, BOPTN Grants Funding Medan State University with grant number 178A/UN33.8/KU/2016, Post-doctoral grants from the ministry of research, technology and higher education of Indonesia.

REFERENCES

Antimicrobial Profile of *Premna pubescens*. Blume and *Centella asiatica* Extracts Against Bacteria and Fungi Pathogens

Martina Restuati and Diky Setya Diningrat
Biology Department of Mathematics and Natural Sciences Faculty, Medan State University, North Sumatera, Indonesia

Abstract

Background and Objective: North Sumatera Indonesia has a rich heritage of knowledge on medicinal plants used for preventive and curative medicine. *Premna pubescens*. Blume (Buasbuas) has been used to increase the body immunity and endurance. *Centella asiatica* (Pegagan) is used for medicinal purposes. This research is important to find out the antimicrobial capabilities of *P. pubescens* and *C. asiatica* methanol extracts. This research is expected to provide the scientific foundation for the development of plants that are traditionally believed to be efficacious drug. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera medicinal plants *P. pubescens* and *C. asiatica* against the main pathogens. **Materials and Methods:** The organic solvent plant extracts are tested on the various microorganisms including bacteria and fungi by using agar diffusion technique. The data were analyzed with Anova statistics by using SPSS software. **Results:** The length of the inhibition zone was measured in millimeters from the edge of the well to the inhibition zone. *P. pubescens* showed significant moderate activity against (14 mm) *Pseudomonas marginalis* and (21 mm) *Streptococcus mutans* with 100 mg/ml DMSO plant drug concentration. The results of lowest (MICs) values are at 66 and highest ones are at 152 mg/ml for *P. pubescens* meanwhile those of (MICs) values are 0 to 155 mg/ml for *C. asiatica*. **Conclusion:** In general, based on the result of this research, it can be said that *P. pubescens* and *C. asiatica* plants can be used as antibacterial and antifungal compounds.

Keywords: *Premna pubescens*, Blume, *Centella asiatica*, antibacterial, antifungal, Minimal inhibitory concentration

Corresponding Author: Diky Setya Diningrat, Biology Department of Mathematics and Natural Sciences Faculty, Medan State University, Jl. Willem Iskandar Pasar V Medan, North Sumatera, Indonesia, Tel: +6181361362400 email: dikysd@unimed.ac.id

Competing Interest: The authors have declared that no competing exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION
The number of medicinal plants is nearly 20,000, this data was according to a study conducted by the World Health Organization (WHO) based on publications on pharmacopoeias and medicinal plants in 91 countries. Nearly 6-7 thousand species of medicinal plants from around about 17-18 thousand flowering plants are known as traditional medicine and officially recognized as medicine system in Indonesia, i.e., North Sumatra, Borneo, Celebes and Papua.

North Sumatra is very rich in plants that are believed to have medicinal properties for either prevention or treatment. Since ancient civilization, the various parts of different plants were used to eliminate pain, control suffering and counteract disease. Plants generally produce many secondary metabolites which constitute an important source of microbicides, pesticides and many pharmaceutical drugs. It has also been widely observed and accepted that the medicinal value of plants lies in the bioactive phytocomponents living in the plants. Much work has been done on ethnomedicinal plants in North Sumatera Indonesia. Medicinal plants represent a rich source of antimicrobial agents. Scientists have recently paid more attention to extracts and biologically active compounds isolated from plant species are used in herbal medicines, because they want to avoid from the antibiotics side effect, i.e., pathogenic microbe resistance.

Premna pubescens. Blume (Family Lamiaceae) is a shrub or tree up to 7-10 m height. It is known by various names like bebuas and buasbuas in Indonesia. In North Sumatera Indonesian traditionally medicinal system, it has been used to increase the body endurance, treat the unwell or catching a cold, help for blood coagulation and overcome for warm infection in children, help to increase breast milk and also increase appetite. Compounds derived from
the plant have been found contain alkaloid, flavonoid, saponin, steroid, dan fenolik3,13. Antimicrobial activity of \textit{Premna pubescens}. Blume was previously screened13.

\textit{Centella asiatica} (Family Mackinlayaceae) commonly names Pegagan, Asiatic Pennywort, North Sumatera Indonesian Pennywort, Luei Gong Gen, Takip, kohol, Antanan, Pegagan, Pegaga, vallaarai Kula kud, Bai Bua Bok and Brahmi. In North Sumatera Indonesia is well-known as “Pegagan” this term is used to improve the mental ability5,6. Antibacterial activity of \textit{C. asiatica} was previously screened11. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera Indonesia medicinal plants \textit{P. pubescens} and \textit{C. asiatica} against the main pathogens. In this paper the results of such studies are reported in order to orient future investigations towards the finding of potent, less toxic to human health and safe antimicrobial agents from natural sources.

MATERIALS AND METHODS

Plant materials and extraction: This research project was conducted from July 2016 to November 2016 in Cell and Molecular Biology Laboratory of Medan State University. The whole plants of \textit{P. pubescens} and \textit{C. asiatica} were collected from Medan State University campus plant collections aged 5-7 years for \textit{P. pubescens} and 5-7 weeks for \textit{C. asiatica} in Medan, North Sumatra, Indonesia. The botanical identification of the collected materials was conducted in herbarium of Bogor botanical garden. The samples were separated and oven dried at 28°C room for 1 week. The samples were grounded into powder form using the grinder. Extraction using Soxhlet apparatus (IWAKI SOXHLET-100 IWAKI soxhlet extractor 100 ML) with 95% (v/v) Methanol PA (sigma-adrich) as solvent for 12 h was performed. The resultant extraction was frozen and dried for 24°C/48 h. Yield of Methanol extracts: 30%23.
Test microorganisms: Microbial strains of clinical, plant and aquatic origin, i.e. *Asperigellus niger*, *Pencillium expansum*, *Fusarium oxysporum*, *Xanthomonas compestries*, *Lactobacillus acidophilus*, *Pseudomonas marginalis*, *Pseudomonas syringae*, *Pseudomonas aeruginosa*, *Streptococcus mutans*, *Steptococcus salivarius* and *Staphylococcus aureus* including both fungi and bacteria were procured from Microbial Type Culture Collection (MTCC) Biology Department Medan State University. Active cultures were generated by inoculating a loopful of culture in separate 100 mL nutrient/potato dextrose broths and incubating on a shaker at 37°C overnight. The cells were harvested by centrifuging at 4000 rpm for 5 min, washed with normal saline, spun at 4000 rpm for 5 min again and diluted in normal saline to obtain 5 x 10^5 cfu/mL.

Determination of antimicrobial activity: The antimicrobial assay of both plant crude extracts was conducted by using the agar well-diffusion method (Balouiri et al., 2016). 20 ml of nutrient agar was dispensed into sterile universal bottles. Then they are inoculated with 0.2 ml of cultures and mixed gently as well as poured into sterile petri dishes. After setting a number 3-cup borer (6 mm diameter) was properly sterilized by flaming and used to make three to five uniform cups/wells in each petri dish. A drop of molten nutrient agar was used to seal the base of each cup. The cups/wells were filled with 50μl of the extract concentrations of 100, 300 and 500 mg/ml DMSO and allow diffusion for 45 minutes. The solvents used to reconstitute the extracts were similarly analyzed. The plates were incubated at 37°C for 24 hours for bacteria. The procedure above is also allowed for fungal assays, however media used is not nutrient agar but potato dextrose agar and incubated at 25°C for 48 hours. The zones of inhibition were measured with antibiotic zone scale in mm and the experiment was carried out in duplicates.
Statistical analysis: All data were statistically analyzed with SPSS software (version 16). One-way analysis of variance (ANOVA) was used to study significant difference between means and significance level at p=0.05.

RESULTS
In the study of methanolic extract exhibited different degree of growth inhibition against the tested bacterial and fungal strains. Methanolic extracts of *P. pubescens* and *C. asatica* exhibited considerable antimicrobial activity against tested microbial strains. *Premna pubescens* showed significant moderate activity against *P. marginalis* and *S. mutans* with 100 mg/ml DMSO medicinal plant concentration. *Centella asiatica* is significant against *P. syringae* and moderate against other pathogens *F. oxysporum*, *L. acidophilus*, *S. salivarious* and *S. aureus* with 100 mg/ml DMSO.

Table 1. Antimicrobial activity of methanolic extracts *Premna pubescens*. Blume and *Centella asiatica*

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Premna pubescens. Blume</th>
<th>Centella asiatica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Penicillium expansum</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Lactobacillus acidophilus</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Streptococcus salivarious</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Pseudomonas marginalis</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Pseudomonas syringae</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Xanthomonas campestris</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>
Value indicates no activity. Volume per well: 50μl, Borer size used: 6mm, used Plant Methanolic extract concentrations (A = 100, B = 300, and C = 500 mg/DMSO ml) MIC-Minimum inhibitory concentration

The results of lowest MICs value are at 66 and highest at 152 mg/ml for *P. pubescens* meanwhile those of highest ones are at 0,155 mg/ml for *C. asatica*. The variation of antimicrobial activity of our extracts might be due to the distribution of antimicrobial substances which is varied from fraction to fraction of the crude extract. No inhibitions were observed with *P. pubescens* on *P. expansum* and *C. asatica* on *P. aeruginosa* as well as *S. mutans*.

DISCUSSION

These extracts has proved that it has inhibitory effects on germination and on the viability of fungal spores as well. Both plant extracts showed moderate good activity against A. niger as a saprophyte in soil causing black mould of onion, garlic and shallot, stem root of Dracaena, root stalk rot of Sansevieria, and boll rot of cotton; spoilage of cashew kernels, dates, figs, vanilla pods as well as dried prune. The effectiveness of the active compounds in plant extracts causes the production of growth inhibition zones that appear as clear as around the wells. However, plant extract was unable to exhibit antibacterial activity against tested bacterial strains. These bacterial strains may have some kinds of resistance mechanisms e.g. enzymatic inactivation, target sites modification and decrease of intracellular drug accumulation or the concentration of the compound used may not be sufficient.

The adverse effects of *P. pubescens* consumption are reported can cause blisters, lesions and eruptions when taken by patients for the treatment of joint pains and gastrointestinal problems. Due to its toxicity, the latex extracted from the stem has traditionally been used to make
poison arrows7,14. Several phytochemicals are identified in different parts. \textit{P. pubescens} flowers contain terpenes, multiflorenol, and cyclisadol22. The latex contains caoutchouc, calotropin, calotoxin, calactin, uscharin, trypsin, voruscharin, uzarigenin, syriogenin and proceroside2. Chemical constituents of \textit{P. pubescens} flowers are lupeol, uscharin, proceroside, proceragenin (cardenolide), syriogenin, taraxast-20 (30)-en-3-(4-methyl-3-pentenoate), 3-thiazoline cardenolide, gigantin, giganteol, isogiganteol, uscharidin, uzarigenin voruscharin a, calotropeol, 3-epimoretenol, a-lactuceryl acetate and alactuceryl isovalerate24. Root bark of \textit{P. pubescens} contains triterpenes, a new norditerpenyl ester named as calotropterpenyl ester, and two unknown pentacyclic triterpinoids named as calotropursenyl acetate and calotropfriedelenyl acetate, akundarol isovalerate, mundarol isovalerate and quercetin, 3-rutinoside24. The principal active medicines are asclepin and mudarin9.

No inhibition was observed with control which proves that solvents could not act as antimicrobial agents. In almost all tests, crude methanolic extracts showed better inhibition against all the tested bacterial and fungal strains indicating that active ingredients in plant materials could be extracted into methanol. However, the highest antibacterial activity of \textit{P. pubescens} was observed due to the presence of secondary metabolites such as alkaloids, flavonoids and steroids against \textit{S. aureus}. \textit{Pseudomonas aeruginosa} which is wide-spread in soil, water and sewage can be considered as an indication of their involvement in the natural process of mineralization of organic matter. It has long been a troublesome cause of secondary infections of wound, especially burns, giving rise to blue green pus. It produces meningitis, when introduced by lumber puncture and urinary tract infection when introduced by catheters and instruments or irrigating solutions15. \textit{S. aureus} occur harmlessly as a normal flora of the skin and mucous membrane and it is one of the commonest bacterial
pathogens encountered in the community causing severe food poisoning or minor skin infections to severe life threatening infections\cite{17}. \textit{C. asiatica} methanol extract having strong inhibition activity against \textit{P. aeruginosa} and \textit{S. aureus} was previously reported\cite{6}.

CONCLUSION

\textit{Premna pubescens} and \textit{Centella asiatica} extracts showed antimicrobial activity as antibacterial and anti-fungal against tested pathogens including antibiotic resistant strains. Future recommendation: it is necessary to determine the toxicity of the active constituents, their side effects and pharmaco-kinetic properties.

ACKNOWLEDGEMENTS

We are thankful for constant encouragement and support from Biology Department, Mathematic and Natural Sciences, BOPTN Grants Funding Medan State University with grant number 178A/UN33.8/KU/2016, Post-doctoral grants from the ministry of research, technology and higher education of Indonesia.

REFERENCES

Research Article

Antimicrobial Profile of *Premna pubescens*. Blume and *Centella asiatica* Extracts Against Bacteria and Fungi Pathogens

Martina Restuati and Diky Setya Dingrat

Department of Biology, Faculty of Mathematics and Natural Sciences, Medan State University, 20221 Medan, North Sumatera, Indonesia

Abstract

Background and Objective: North Sumatera Indonesia has a rich heritage of knowledge on medicinal plants used for preventive and curative medicine. *Premna pubescens*. Blume (Buasbuas) has been used to increase the body immunity and endurance. *Centella asiatica* (Pegagan) is used for medicinal purposes. This study is important to find out the antimicrobial capabilities of *Premna pubescens* (*P. pubescens*) and *Centella asiatica* (*C. asiatica*) methanol extracts. This study is expected to provide the scientific foundation for the development of plants that are traditionally believed to be efficacious drug. The aim of the study was to investigate *in vitro* antimicrobial activity of North Sumatera medicinal plants *P. pubescens* and *C. asiatica* against the main pathogens. **Materials and Methods:** The organic solvent plant extracts are tested on the various microorganisms including bacteria and fungi by using agar diffusion technique. The data was analyzed with ANOVA statistics by using SPSS software. **Results:** The length of the inhibition zone was measured in mm from the edge of the well to the inhibition zone. *P. pubescens* showed significant moderate activity against (14 mm) *Pseudomonas marginalis* and (21 mm) *Streptococcus mutans* with 100 mg mL$^{-1}$ DMSO plant drug concentration. The results of lowest (MICS) values are at 66 and highest ones are at 152 mg mL$^{-1}$ for *P. pubescens* meanwhile those of (MICS) values are 0-155 mg mL$^{-1}$ for *C. asiatica*. **Conclusion:** In general, based on the result of this research, it can be said that *P. pubescens* and *C. asiatica* plants can be used as antibacterial and antifungal compounds.

Key words: *Premna pubescens*. Blume, *Centella asiatica*, antibacterial, antifungal, minimal inhibitory concentration

Received: Accepted: Published:

Citation: Martina Restuati and Diky Setya Dingrat, 2018. Antimicrobial profile of *Premnapubescens*. Blume and *Centella asiaticae* extracts against bacteria and fungi pathogens. Int. J. Pharmacol., CC: CC-CC.

Corresponding Author: Diky Setya Dingrat, Department of Biology, Faculty of Mathematics and Natural Sciences, Medan State University, 20221 Medan, North Sumatera, Indonesia Tel: +6181361362400

Copyright: © 2018 Martina Restuati and Diky Setya Dingrat. This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.
INTRODUCTION

The number of medicinal plants is nearly 20,000, this data was according to a study conducted by the World Health Organization (WHO) based on publications on pharmacopoeias and medicinal plants in 91 countries. Nearly 6-7 thousand species of medicinal plants from around about 17-18 thousand flowering plants are known as traditional medicine and officially recognized as medicine system in Indonesia, i.e., North Sumatra, Borneo, Celebes and Papua.

North Sumatra is very rich in plants that are believed to have medicinal properties for either prevention or treatment. Since ancient civilization, the various parts of different plants were used to eliminate pain, control suffering and counteract disease. Plants generally produce many secondary metabolites which constitute an important source of microbicides, pesticides and many pharmaceutical drugs. It has also been widely observed and accepted that the medicinal value of plants lies in the bioactive phytocomponents lying in the plants. Much work has been done on ethnomedicinal plants in North Sumatera Indonesia. Medicinal plants represent a rich source of antimicrobial agents. Scientists have recently paid more attention to extracts and biologically active compounds isolated from plant species are used in herbal medicines, because they want to avoid from the antibiotics side effect, i.e., pathogenic microbe resistance.

Premna pubescens. Blume (Family Lamiaceae) is a shrub or tree up to 7-10 m height. It is known by various names like bebas and buasus in Indonesia. In North Sumatera Indonesian traditionally medicinal system, it has been used to increase the body endurance, treat the unwell or catching a cold, help for blood coagulation and overcome for warm infection in children, help to increase breast milk and also increase appetite. Compounds derived from the plant have been found contain alkaloid, flavonoid, saponin, steroid, dan fenolik. Antimicrobial activity of Premna pubescens. Blume was previously screened.

Centella asiatica (Family Mackinlayaceae) commonly names Pegagan, Asiatic Pennywort, North Sumatera Indonesian Pennywort, Luei Gong Gen, Takip, Kohol, Antanan, Pegagan, Pegaga, Vallarai Kula kud, Bai Bua Bok and Brahmi. In North Sumatera Indonesia is well-known as "Pegagan" this term is used to improve the mental ability. Antibacterial activity of C. asiatica was previously screened. The aim of the study was to investigate in vitro antimicrobial activity of North Sumatera Indonesia medicinal plants P. pubescens and C. asiatica against the main pathogens. In this study, the results of such studies are reported in order to orient future investigations towards the finding of potent, less toxic to human health hand, safe antimicrobial agents from natural sources.

MATERIALS AND METHODS

Plant materials and extraction: This research project was conducted from July 2016 to November 2016 in Cell and Molecular Biology Laboratory of Medan State University. The whole plants of P. pubescens and C. asiatica were collected from Medan State University campus plant collections aged 5-7 years for P. pubescens and 5-7 weeks for C. asiatica in Medan, North Sumatera, Indonesia. The botanical identification of the collected materials was conducted in herbarium of Bogor botanical garden. The samples were separated and oven dried at 28°C room for 1 week. The samples were grounded into powder form using the grinder. Extraction using Soxhlet apparatus (IWAKI SOXHLET-100 IWAKI soxhlet extractor 100 ML) with 95% (v/v) Methanol PA (Sigma-Aldrich) as solvent for 12 h was performed. The resultant extraction was frozen and dried for 24°C/48 h. Yield of Methanol extracts: 30%.

Test microorganisms: Microbial strains of clinical, plant and aquatic origin i.e. Aspergillus niger, Penicillium expansum, Fusarium oxysporum, Xanthomona sp, Lactobacillus acidophilus, Pseudomonas marginalis, Pseudomonas syringae, Pseudomonas aeruginosa, Streptococcus mutans, Streptococcus salivarius and Staphylococcus aureus including both fungi and bacteria were procured from Microbial Type Culture Collection (MTCC) Biology Department Medan State University. Active cultures were generated by inoculating a loopful of culture in separate 100 mL nutrient/potato dextrose broth and incubating on a shaker at 37°C overnight. The cells were harvested by centrifuging at 4000 rpm for 5 min, washed with normal saline, spin at 4000 rpm for 5 min again and diluted in normal saline to obtain 5 x 10^8 cfu mL^-1.

Determination of antimicrobial activity: The antimicrobial assay of both plant crude extracts was conducted by using the agar well-diffusion method 20 mL of nutrient agar was dispensed into sterile universal bottles. Then they are inoculated with 0.2 mL of cultures and mixed gently as well as poured into sterile petri dishes. After setting a number 3 cup borer (6 mm diameter) was properly sterilized by flaming and used to make 3-5 uniform cups/wells in each petri dish. A drop of molten nutrient agar was used to seal the base...
of each cup. The cups/wells were filled with 50 µL of the extract concentrations of 100, 300 and 500 mg mL⁻¹ DMSO and allow diffusion for 45 min. The solvents used to reconstitute the extracts were similarly analyzed. The plates were incubated at 37°C for 24 h for bacteria. The procedure above is also allowed for fungal assays, however media used is not nutrient agar but potato dextrose agar and incubated at 25°C for 48 h. The zones of inhibition were measured with antibiotic zone scale in mm and the experiment was carried out in duplicates.

Statistical analysis: All data were statistically analyzed with SPSS software (version 16). One-way analysis of variance (ANOVA) was used to study significant difference between means and significance level at p = 0.05¹⁶.⁴

RESULTS

In the study of methanolic extract exhibited different degree of growth inhibition against the tested bacterial and fungal strains. Methanolic extracts of *P. pubescens* and *C. asiatica* exhibited considerable antimicrobial activity against tested microbial strains (Table 1). *Premna pubescens* showed significant moderate activity against *P. marginalis* and *S. mutans* with 100 mg mL⁻¹ DMSO medicinal plant concentration. *Centella asiatica* is significant against *P. syringae* and moderate against other pathogens *F. oxysporum*, *L. acidophilus*, *S. salivarius* and *S. aureus* with 100 mg mL⁻¹ DMSO.

The results of lowest MICs value are at 66 and highest at 153 mg mL⁻¹ for *P. pubescens* meanwhile those of highest ones are at 0.155 mg mL⁻¹ for *C. asiatica*. The variation of antimicrobial activity of our extracts might be due to the distribution of antimicrobial substances which is varied from fraction to fraction of the crude extract. No inhibitions were observed with *P. pubescens* on *P. expansum* and *C. asiatica* on *P. aeruginosa* as well as *S. mutans*.

DISCUSSION

These extracts has proved that it has inhibitory effects on germination and on the viability of fungal spores as well. Both plant extracts showed moderate good activity against *A. niger* as a saprophyte in soil causing black mould of onion, garlic and shallot, stem root of *Dracaena*, root stalk rot of *Sansevieria* and boil rot of cotton, spoilage of cashew kernels, dates, figs, vanilla pods as well as dried prune. The effectiveness of the active compounds in plant extracts causes the production of growth inhibition zones that appear as clear as around the wells. However, plant extract was unable to exhibit antibacterial activity against tested bacterial strains. These bacterial strains may have some kinds of resistance mechanisms e.g. enzymatic inactivation, target sites modification and decrease of intracellular drug accumulation¹⁷ or the concentration of the compound used may not be sufficient.

The adverse effects of *P. pubescens* consumption are reported can cause blisters, lesions and eruptions when taken by patients for the treatment of joint pains and gastrointestinal problems. Due to its toxicity, the latex extracted from the stem has traditionally been used to make poison arrows³,¹⁰. Several phytochemicals are identified in different parts. *P. pubescens* flowers contain terpenes, multiflorenol and cyclisado¹⁸. The latex contains caulotoc, calotropin, calotoxin, calactin, uscharin, trypsin, voruscharin, uzarigenin, syriogenin and procerside¹⁴. Chemical

Table 1: Antimicrobial activity of methanolic extracts *Premna pubescens* Blume and *Centella asiatica*

<table>
<thead>
<tr>
<th>Pathogens</th>
<th>Premna pubescens Blume</th>
<th>Centella asiatica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Penicillium expansum</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Bacteria (Gram +ive)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus acidophilus</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Steptococcus salivarius</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Bacteria (Gram -ive)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas marginalis</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Pseudomonas syringae</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Xanthomonas campestris</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

Value indicates no activity. Volume per well: 50 µL, Borer size used: 6 mm used plant methanolic extract concentrations (A = 100, B = 300 and C = 500 mg/DMSO mL) MIC: Minimum inhibitory concentration
constituents of *P. pubescens* flowers are lupeol, uscarin, proceroaside, proceragenin (cardenolide), syriogenin, taraxast-20(30)-en-3-((4-methyl-3-pentenoate), 3-thiazoline cardenolide, gigantin, giganteol, isogiganteol, uscharidan, uzarigenin voruscharin a, calotropeol, 3-epimoretenol, alactuceryl acetate and alactuceryl isovalerate. Root bark of *P. pubescens* contains triterpenes, a new norditerpenyl ester named as calotroperylpenyl ester and two unknown pentacyclic triterpenoids named as calotropursenyl acetate and calotropfriedelenyl acetate, akundarol isovalerate, mundarol isovalerate and quercetin, 3-rutinoside. The principal active medicines are asclepin and mudarin.

No inhibition was observed with control which proves that solvents could not act as antimicrobial agents. In almost all tests, crude methanolic extracts showed better inhibition against all the tested bacterial and fungal strains indicating that active ingredients in plant materials could be extracted into methanol. However, the highest antibacterial activity of *P. pubescens* was observed due to the presence of secondary metabolites such as alkaloids, flavonoids and steroids against *S. aureus*. *Pseudomonas aeruginosa* are which is wide-spread in soil, water and sewage can be considered as an indication of their involvement in the natural process of mineralization of organic matter. It has long been a troublesome cause of secondary infections of wound, especially burns and giving rise to blue green pus. It produces meningitis, when introduced by lumber puncture and urinary tract infection when introduced by catheters and instruments or irrigating solutions. *S. aureus* occurs harmlessly as a normal flora of the skin and mucous membrane and it is one of the commonest bacterial pathogens encountered in the community causing severe food poisoning or minor skin infections to severe life threatening infections. *C. asiatica* methanol extract having strong inhibition activity against *P. aeruginosa* and *S. aureus* was previously reported.

CONCLUSION

Premna pubescens and *Centella asiatica* extracts showed antimicrobial activity as anti-bacterial and anti-fungal against tested pathogens including antibiotic resistant strains. Future recommendation: It is necessary to determine the toxicity of the active constituents, their side effects and pharmacokinetic properties.

SIGNIFICANCE STATEMENTS

This research compared the antibacterial and antifungal effects of the ethanol extracts of *Premna pubescens* and *Centella asiatica*. *Centella asiatica* ethanol extract is more effective as an antifungal than *P. pubescens* where *C. asiatica* effective inhibits *Aspergillus* and *fusarium* growth but *P. pubescens* is more effective in inhibiting *penicillium* growth. *Premna pubescens* is more effective as an antibacterial than *C. asiatica*. Either Gram-positive or Gram-negative bacteria, *Premna*’s efficacy as an antibacterial is much better than *C. asiatica*. As such, it helps us in determining the development of bioactive compounds from *C. asiatica* as antifungal and *P. pubescens* as antibacterial.

ACKNOWLEDGEMENTS

We are thankful for constant encouragement and support from Biology Department, Mathematic and Natural Sciences, BOPTN Grants Fundung Medan State University with grant number 178A/UN33.8/KU/2016, Post-doctoral grants from the ministry of research, technology and higher education of Indonesia.

REFERENCES