PROCEEDING

First Annual International Seminar on Trends in Science and Science Education 2014

5th – 6th December 2014
Garuda Plaza Hotel - Medan

Editors:

Prof. Dr. Herbert Sipahutar, M.Sc.
Prof. Drs. Moltan, M.Sc., Ph.D.
Prof. Drs. Manihar Situmorang, M.Sc., Ph.D.
Prof. Dr. Muktar, M.Pd. Alkhaiff
Maas Siregar, S.Si., M.Si. Drs.
Zulkiifi Simatupang, M.Pd

Universitas Negeri Medan
2015
FROM THE EDITORS

The First International Seminar on Sciences and Science Education, ISOSE, organized by Faculty of Mathematics and Natural Science of State University of Medan, was held on 4 – 5 December 2014 in Medan, North Sumatra, Indonesia. The seminar particularly encouraged the interaction of research students and developing academics with the more established academic community in an informal setting to present and to discuss new and current work. The high quality of the papers and the discussion represent the thinking and experience of experts and practitioners, researchers, lecturers and students in their particular fields and interests. The papers contributed the most recent scientific knowledge known in science and science education.

This proceeding contains all the paper presented in the seminar, consisted of 11 papers of Biological Sciences, 11 papers of Chemical Sciences, 3 papers of Mathematical Sciences, 14 papers of Physical Sciences and 39 papers of Science Education.

In addition to the contributed papers, an outstanding keynote presentation on National Curriculum 2013 was made by Prof. Dr. Syawal Gultom (formerly Rector of State University of Medan, Unimed), now as Head of Badan Pengembangan Sumberdaya Manusia Pendidikan of Department of Education and Culture of Republic of Indonesia. This presentation gives all prapatipant a new and comprehensive perspective on the orientation of national education in the next era.

Two invited keynote presentations were given by Prof. Dr. Yaya Rukayadi from Department of Food Science, Faculty of Food Science and Technology and Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Sārdang, Selangor DarulEhsan, Malaysia who spoke on how to appreciate the nation through research javanese turmeric or temulawak (Curcuma xanthorrhiza ROXB.), and by Dr. Phattrawan Tongkumchum, Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, Thailand who spoke about the applications of the weighted sum contrasts methods on graphing confidence interval for adjusted mean, their used for comparing two and several groups, and adjustment for covariates.

We would like to express our deep appreciation to Prof. Dr. Ibnu Hajar, Rector of State University of Medan for financial support by means of Dana DIPA Unimed FY 2014. We would like to express our deep appreciation to Prof. Dr. Motlan (Dean of EMIPA Unimed), all sponsors, all member of seminar committee, that make the seminar happen in a great success.

We thank all authors and participants for their contributions.

Medan, February 2015

Editors
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Keynote Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>KS-001 Dasar Pertimbangan Penetapan Struktur Kurikulum 2013
Prof. Dr. Syawal Galtom, M.Pd.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Invited Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS-001 Confidence Intervals with Application to Environmental Studies in Southern Thailand
Phuthawan Tongkamee</td>
</tr>
<tr>
<td>IS-002 Appreciate the Nation Through Research Javanese Turmeric or Temulawak (Curcuma xanthorrhiza Roxb.); Xanthorrhizol an “Angel” Compound in the Rhizome of Temulawak and Its Applications
Yaya Rukiyadi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biological Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS-001 Isolation of Heat Shock Proteins Gena (HSPs-gene) in the Silkworm, Bombyx mori (C801)
Musitta Tuminjung, Maryomi Cycc Tobing, Sjarifuddin Rjas, and Darma Bakti</td>
</tr>
<tr>
<td>BS-002 Mating Behavior of Male Mice After MSG Administration during Intra Uterine to Mature Periods of Life
Herbert Sipayutah and Adilawa Y.D. Lina Goel</td>
</tr>
<tr>
<td>BS-004 The Growth of Orchid (Dendrobium sp) in In Vitro Giving with Coconut Water on Different Medium
Fazniyah Hanipah</td>
</tr>
<tr>
<td>BS-005 Diversity of Lichens on the Stands of Mahoni(Swieteniamacrophyla) Functioning as Shade Plants in Medan
Asgar Hasairin, Nurlahasri Pasaribu, Lislar L. Sudirman, and Retno Widhiastuti</td>
</tr>
<tr>
<td>BS-006 Studies on Species Diversity and Growth Rate of Mold in Musk Lime Pickle (Garifortunella microcarpa); Food Society of Malayu
Md. Yusof Nasution and Asgar Hasairin</td>
</tr>
<tr>
<td>BS-007 In Vitro Selection Uplandrice Nias Island to Aluminium Resistant Character and Low pH through Somatic Variation and Gamma-Rays Irradiation
Syahnul Edi, Lizwarni and Idranusa</td>
</tr>
<tr>
<td>BS-008 Cassava Leaves Battery as Alternative Energy Based on Environment Friendly Technology
M. Gade</td>
</tr>
<tr>
<td>BS-009 Description of Endophytic Fungi of Plants Raru (Coylealbium melanoxyton)
Genus Alternaria
Ustawiin Hasanah, Rizuyati and Idranusa</td>
</tr>
<tr>
<td>BS-010 The Effect of Biji Mete (Scomeromorus commerson) in the Feed to the Decline in Blood Cholesterol Level Hypercholesterolemic Male Mice (Mus musculus)
Rudi Kartika and Eddyanto</td>
</tr>
</tbody>
</table>
Chemical Science

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-001</td>
<td>The Binding Behaviour and Conformation of Rhodobacter sphaeroides TSPO in DDM and DPC Detergents</td>
<td>NorihSusanti, Joshua Sharpe and Krzysztof Varga</td>
<td>97 - 102</td>
</tr>
<tr>
<td>CS-003</td>
<td>The Utilization of Tamarillo Peels as Matrix of Bacterial Cellulose-Base Nanopaper</td>
<td>Joshua and Sihwanan Gey</td>
<td>110 - 114</td>
</tr>
<tr>
<td>CS-004</td>
<td>Isolation and Characterization of α-Cellulose of Rice Leaves</td>
<td>Yasminara, Basuki Wirjosentoro, Thurnan, and Edlyanto</td>
<td>115 - 119</td>
</tr>
<tr>
<td>CS-005</td>
<td>Inhibitory Activity of Alkaloid of Extract Ethanol Ranti Hitam (Solanum blumei Nees ex Blume) Fruit ON Leukemia L1210 Cancer Cells Growth</td>
<td>Mursita Simorangkir, Ribis Suhructi, Tomel Berus and Partornam Simanjuntak</td>
<td>129 - 126</td>
</tr>
<tr>
<td>CS-006</td>
<td>The Isolation of Nano Crystaline Cellulose from Palm Empty Fruit Bunches</td>
<td>Mahiyar Harahap,enny Aulia, and Sakaurnan Gey</td>
<td>127 - 131</td>
</tr>
<tr>
<td>CS-007</td>
<td>Study of Rubber Seed Oils Hydrocracking into Biomasside and Diesel Fraction Over the Combination Y-Zeolite and Ni Catalyst</td>
<td>Ary Anggara Wibawa, Salsabila Firdausyah, Siti Hajjah, Dina Doriyant, Juaniya Layla Shimbong, Ahmad Nasir Pulungan</td>
<td>132 - 140</td>
</tr>
<tr>
<td>CS-008</td>
<td>Compregnated Oil Palm Trunk (Elaeis guineensis Jacq.) with 20% Dammar Resin (Agathis dammara)</td>
<td>Nurjafrainti, Leni Waidutri, and Basuki Wirjosentoro</td>
<td>141 - 144</td>
</tr>
<tr>
<td>CS-009</td>
<td>The Activity Values of Cia (Conjugated Linoleic Acid) Synthesized from Castor Oil by Using Visible Spectrophotometer with DPPH as Free Radical</td>
<td>Mahfum Sitorus and Bejoka Nainggolan</td>
<td>145 - 147</td>
</tr>
<tr>
<td>CS-111</td>
<td>Effect of Temperature and Composition Zeolite on the Performance Membrane-Zeolite for Separation of Ethanol Water by Permeation</td>
<td>Raduan, Rahmat Nadi, Ani Sutami, and Amin Sartika Daulay</td>
<td>155 - 163</td>
</tr>
<tr>
<td>CS-122</td>
<td>Biofuel Production from Hydrocracking MEFA of Rice Bran Oils Over Natural Zeolite Supported Ni and Ni-Mo Metals</td>
<td>June Layla Shimbong, Jasmiek, Nurmala, Ahmad Nasir Pulungan, and Ratna Sari Devi</td>
<td>164</td>
</tr>
<tr>
<td>CS-133</td>
<td>Preparation of Kraft Lignin Based Polyol from Pulp Mill Black Liquor through</td>
<td></td>
<td>165</td>
</tr>
</tbody>
</table>
Mathematical Science

MS-001 An Active Constrained Based Approach for Solving Problems for Positioning New Products Under Risk
Nuril Khatami 169–178

MS-002 An Integrated Optimization Model for River Water Quality to Estimate Wastewater Removal
Syafri 179–188

MS-003 An Improved Approach for Solving the Plant Cycle Location Problem
Agusman 189–192

Physical Science

PS-001 A Comparison of Methods for Testing Homogeneity of Average Temperature and Precipitation Series
Marzuki Sinarbeka andesty Sunyansingthi 193–200

PS-002 Mapping for Groundwater Potential Based on Resistivity Data Interpretation in Palimak Paku Kutambaru Langkat Regency
Hengki Sembiring and Rita Juliandi 201–209

PS-003 Lithology of Ketukan Watershed in Langkat
Rochayanti N R Simatupang and Rita Juliandi 210–217

PS-004 Anthropogenic Causes Analysis on Heavy Metal Pollution in River Water and Sea Water in Middle Tapanuli Regency North Sumatera
Rahmatyah, Edly Marlanto, Mester Sipem, and Motan 218–227

PS-005 Morphological Analysis and Content Elements of Limestone from Village Sukam Langkat Using Scanning Electron Microscope (SEM)
Rita Juliandi, Timbangan Sembiring, Mester Sipem, and Motan 228–238

PS-006 Influence of Concentration and Post-Heating to the Crystal Size and Optical Properties of ZnO Thin Films
Nurul Siregar, Edly Marlanto, Saharman Gai, and Nural Tazqiz 239–248

PS-007 Synthesis and Characterization Optical Properties of Cu2O Nanoparticles with Coprecipitation Method Based Concentration Variations Precipitator
Pinter Simamora, Jansen R S, and Bertan M. Siahaan 249–259

PS-008 Thermal Analysis and Structure of Nano Composite Palm Oil Boiler Ash
Eva Mariina Gunting and Nudin Bakki 260–269

PS-009 Effect of Rice Husk Ash and Palm Oil Boiler Ash as a Mixture on Concrete Porosity
Karya Siusinggo and Satria Mihardi 270–278

PS-010 Geoelectric Investigation Schlumberger Configuration of Limestone Distribution in Cangap Kerabang Radio Area Kutambar Subdistrict Langkat Regency
Rappel Sitorong and Kovoa S.T. Sigia 279–288

PS-011 To Determine the Geothermal Fluid and to Identify Geothermal Stones Mineral at 289–296
PS-012 Correlation of Spectral Reflectance Characteristic Based on Spectrometer Cropscam MSR 16R and Satellite Image Landsat TM (Study Case In Medan-Indonesia)
Togi Tampubolon

PS-013 Sensitivity of Breaks for Additive Seasonal and Trends (BFAST) Method to Detect the Vegetation Changes Based on the Choice of Vegetation Indices and Land Cover Types
Yanti Dannatun, Esti Suryaninggih, and Lantupu Naitgangon

PS-014 Influence of Sintering Time on the Properties of High Temperature Superconductor BPSCCO Based
Eidi Sihombing

Abd. Hakim S and Marnusa S Simanjuntak

Science Education

SE-001 Impact of Phet Simulation Media to Minimize Quantity Misconceptions Students in Learning Dynamic Electrical Material
A.Halim, Azzorkasyi and Ibm Khaiden

SE-002 Misconception on Biology Materials Among Biology Teachers and Science Students of Senior High School in North Sumatra
Adriana Y.D. Umi Gaol and Herbert Sipahutar

SE-003 Misconception Reduction Effectiveness in Physics Learning Through Laboratory Working Methods in the Concept of Temperature and Heat
A.Halim, Quetsbalun and Ibm Khaiden

SE-004 The Effect of Problem Based Learning Model Toward Students’ Science Process Skills in Senior High School
Turip Betty, Simanjuntak Mariati Pamona, and Purba Eriksen

SE-005 The Development of Media Device on Problem Based Learning Applied Microbiology
Hasnidin and Mahmud

SE-006 The Effectiveness of Using Developed Problem Based Learning Tools on General Physics II of Physics Student, State University of Medan
Jurahasa Sinunang, Sehat Sinapatuang, and Ibu Wahyuni

SE-007 Application of Resource Based Learning Model for Improving Learning Outcomes Student in the Cube and Beams Matter in Class VIII SMP Negeri 5 Stabat T.A. 2013/2014
Asri Labis

SE-008 The Difference of Mathematical Problem Solving Achievement of Public Junior High School Based on Learning Approach
Ani Mirantri

SE-009 The Effect of Cooperative Learning Model Type Group Investigation on Student’s Achievement of Static Fluid in Class XI of SMA Negeri 1 Perbaungan A.Y. 2013/2014
Dermi and Rifki Almada

SE-010 Effect of Cooperative Learning Model Type Numbered Heads Together (NHT) Assisted Animation Media of Student Learning Outcomes
Mariati Simanjuntak and Rebecca Sianturi

SE-011 Effect of Project Based Learning Model with KWL Worksheet on Divergent Thinking in Solved Physics Problems
Satria Mihardi and Karya Simlingga

SE-012 The Improvement of the Mathematical Problem Solving Ability at MTSN 2

Universitas Negeri Medan
The Chairman Disdik University
Through Realistic Math Approach
Muhammad Arif Hidayat

SE-013 The Influence of Inquiry Training Learning Model Toward Students’ Achievement on the Topic of Heat in Class X Semester II MAN Kesarani A.Y. 2013/2014
Suhail Sinun and Ika Nurjanah Sireh
420 - 426

Venisha E.A. Pantele and Tri Hersono
429 - 436

SE-015 Analysis of Competency and Performance of Secondary Teachers: Case Study at Five Cities/Districts in South Sumatra
Umni Chotimah, Zulfa Ali, and Farida
437 - 445

SE-016 An Intensive Study of Teaching Model of Quantum Physics at Study Program of Physics Education in University
Marin Bargin Harahap
446 - 452

SE-017 The Effectiveness of Laboratory Experiment Method to Increase Activity and Student’s Achievement on Teaching Salt Hydrolysis
Rumila Shafab, Agustina M. L. Tobing, and Irwansyah Sahid
453 - 460

SE-018 Contribution of Formal Thinking Ability on the Concept Mastery of Kinematics
Sendhuk R Manurung
461 - 469

SE-019 The Use of Equation Worked Examples for Solving Electrochemistry Problem
Endawati
470 - 477

SE-020 The Effect of Predict Observe Explain Strategy (POE) on Students Activity and Learning Outcome on Human Respiratory System Sub Topic in Grade X Science Program at SMA Negeri 15 Medan Academic Year 2013/2014
Suryadi Hendra Yanto and Syafini Edi
478 - 484

SE-021 The Difference Between the Ability of Students in Solving Problem by Applying Cooperative Learning Type STAD With and Without the Help of Geogebra
Sinta Damarini Simanjuntak
485 - 493

SE-022 Effect of Creative Learning Techniques and Reasoning Ability Toward Student Achievement in Physics
Purwanto
494 - 507

SE-023 Improving Speaking Ability of the Students in English Lessons by Using Learning Model TPS (Think Pair Share) in Class V SD Immanuel Medan
Naelkhan Simbolon, Firdawati R. Tambunan
508 - 517

SE-024 The Application of Quantum Model Learning to Improve Student Learning Motivation on Science Subject State Class V SD 054 978 Medan Denai
Nani Barouch Naution
518 - 523

SE-025 Group Investigation Assisted E-Learning: Assessing the Impact of Interactive Media on Student’s Learning Achievement and Critical Thinking
Wenny Pintalitho and Herbit Sipahutar
524 - 532

SE-026 A Gametogenesis Module Development in POE (Prediction, Observation and Explanation) Oriented Model
Hafizal Ilahi Baja and Menda Nagoalah
533 - 539

SE-027 Scientific Creativity in Learning Biology in Senior High School Tebing Tinggi City, North Sumatra
Wilja Areina
540 - 546

SE-028 Application of Cognitive Theory of Content on Learning Ability to Increase Physical Science Using Generic Injection Needle Kit
Nurmauli
547 - 556

SE-029 The Perceptions of Global Warming and Environmental Benefits of Biodiesel for Sustainable Energy Among High School Students in Jakarta
Desnya
557 - 565

SE-030 Ability Profile of Multiple Representations (MR) Students of Teacher Prospective on Static Electricity Topic
566 - 571
Nuriling Marpaung and Lili Asari

SE-031 Low Achievement of Indonesian Student in PISA and TIMSS Test Results and the Related Factors
Rihaman Abdallah Sani
572 - 588

SE-032 The Effect of Guided Discovery Based Learning Model Towards Students Learning Outcomes of Chemistry on Redox Reaction Concept
Anna Juniar, Desie Suryani, Perwitt Mistyanto, and Debby Masteriana
589 - 596

SE-033 A New Breakthrough in Chemistry and Management
Wesly Hutabarat
596 - 604

SE-034 Evaluation of Sports Training Program Guidance Center Student (PPLP) North Sumatra
Saburuddin Yasin Bungun
605 - 615

SE-035 The Characteristics of Theology of Moslem Batak Toba in State University of Medan
Rendi Nur, Usman Pelly, Hasan Bakti Nasution
616 - 625

SE-036 Pengembangan Model Pembelajaran Hybridlearning Mata Kuliah Pengantar Sosologi di Universitas Negeri Medan
Tirsni Andayani
626 - 630

SE-037 Pre Competency Test Standardization on Program of Field Experience HAT Competency-Based Graduate Education Through Item Analysis
Firdausi Sugian, Elvis Napitupulu, Arifin Siregar, Hudson Siddabutar
631
THE DIFFERENCE OF MATHEMATICAL PROBLEM SOLVING ACHIEVEMENT OF PUBLIC JUNIOR HIGH SCHOOL BASED ON LEARNING APPROACH

Ani Minarni
Mathematics Department, The State University of Medan, Medan
E-mail: animinarni1965@gmail.com

ABSTRACT

This paper is the result of a study to investigate the difference of the students' achievement in mathematical problem solving (MPS) based on learning approach. The research is static and quasi-experimental group posttest only. The population was all of students of upper and middle level public Junior High School in Bandung, West Java, Indonesia. One school of each level and two classes of each school were involved as samples. The research also investigates students' mathematical prior knowledge (MPK) either in upper or in the middle level school. One way Anova and two way Anova are used to analyze the data. The research results are: (1) The students in PBL classroom get better achievement in MPS test than the students in conventional one; (2) There is no interaction between PBL and MPK towards MPS; (3) There is no interaction between learning approach and school level.

Keywords: Mathematical problem solving, problem-based learning.

INTRODUCTION

Since the eighteens, mathematical problem solving (MPS) has become the focus of many experts, researchers, and practitioners of mathematics education in many countries. In Indonesia, it is involved as one of goals of learning and teaching mathematics at all levels of school (MoE of Indonesia, 2006). It is due to the view that MPS is considered as the heart of mathematics. In fact, everything learned in mathematics was dedicated to solving a variety of problems. In short, the main goal of doing mathematics is problem solving and through solving problems students construct their new knowledge and grasp mathematical concepts.

According to TIMSS’s evaluation (Mullis, et al., 2008), Indonesian eighth grade students achievement in problems solving is categorized very low. Deeply speaking, in Geometry they only get 19%, meanwhile the international achievement is 32%. In algebra, they get 8% while the international achievement is 18%. The data indicates that the students are lack of problem solving ability. Inherently to the above findings, prior investigation on eighth grade at one public school in Bandung shows that they are incompetent in mathematical problem solving. Precisely, they only get 39%.

Researchers hypothesized that students' low achievement in mathematical problem solving due to the teaching approach the teachers applied (Schoenfeld, 1994). Mathematical
classrooms are still dominated by direct instruction (conventional teaching learning) with less emphasis on applying mathematics to daily life. Students do not have enough experiences seeing how problems are solved and in turn doing it themselves. In short, students are rarely engaged in solving problems. Instead, they only be able imitating their teachers solving routine exercises. This is what Arends (2008) claims as passive processes of learning.

Other research finds that mathematical prior knowledge (MPK) gives contribution to students’ mathematical problem solving ability (Kulik & Reys, 1980). The finding is in line with Arslan and Altun (2007) whose stated that the lack of ability of students in solving mathematical problem is due to the poor of mathematical prior knowledge and the incompetency of choosing and applying the knowledge they have to handle the tasks.

It is then relevant to realize and implement the ways of teaching which give students opportunities and time to be engaged in constructing new skills and knowledge and involved in solving mathematics problems as some researchers and institution recommend (MoE of Indonesia, 2006; Kilpatrick, et. al., 2001; NCTM, 2000; Schoenfeld, 1994).

Arends (1994), Ronis (2008) believe that an innovative and potential approach of teaching which endorse and enable students constructing and reinventing their new knowledge is problem-based learning (PBL). Through PBL, students in the small group are encouraged and facilitated to be actively engaging in solving problems. Using previous knowledge and experience, they try to sharpen their mathematical skills by solving real, challenging, open-ended, and contextual problems.

This research implement PBL with the purpose to enable students reach mathematical problem solving ability. So, the research questions are:

1. Is there the difference of the students’ MPS achievement between students in PBL classroom and the students in conventional classroom?

2. Is there interaction between learning approach (PBL and conventional one) and MPK towards the students MPS?

3. Is there interaction between learning approach (PBL and conventional one) and school level towards the students MPS?

Aspect of mathematical problem solving that will be measured is based on NCTM (2000), they are modelling a situation or daily life problem mathematically, choose or apply appropriate strategy, and explain until interpret solution to initial problem.

METHODOLOGY

The study is a quasi-experimental design with non-equivalent control group posttest only. The population is all of upper and middle level public junior high school students in Bandung.
Indonesia. As samples, two classrooms are taken from each school level: one is for experimental group with PBL instruction, another one is for control group with direct (conventional instruction). Totally, there are 145 students took part in this study, i.e. 71 students are included in PBL classroom, and 74 students belong to conventional classroom.

At each classroom, the students are divided into 8 groups. There are 5 students in each group which consisted of students from mixed ability (high, middle and low MPK) to examine the interaction between learning approach and MPK.

Five experts validated teaching material and mathematics problem solving instrument before being tried-out to students of other equivalent school. All item of the test was valid with Cronbach Alpha reliability 0.76.

Data are collected using a set of instrument. The instrument is a problem solving post-test designed by the investigator for the purpose of this study. The test is given to experiment classroom as well as to conventional one for comparison purposes. An item of the test is presented below.

Problem 1: The trip of the boat
There is a boat which is sailed from Port A in the North straight to Port B in the South along 20 km. The boat turn to the East as far as 24 km to reach Port C. From Port C, the travel of a boat continue straight to Port D in the South along 12 km. Find the distance from Port A to Port D.

RESULTS

Data is analysed by using Statistics Package for Social Science (SPSS) version 19 based on instruction, previous knowledge, and school level. Test of normality and homogeneity of variance gave significant result either for MPS score based on learning approach, MPS score based on learning approach an MPK, or MPS score based on learning approach and school level. Kolmogorov-Smirnov is used to test the normality of the data, and analyses of variance is used to test homogeneity of data at 5% level of significance.
Figure 1. The Difference of Students' Mathematical Problem Solving Achievement. The Difference of Students' Mathematical Problem Solving Achievement Based on Learning Approach. Figure 1 describes mathematical problem solving average score based on learning approach. The students in PBL classroom received average of MPS score 13.66 (approximately 54%), while students in conventional classes earned an average score 9.97 (about 24%). The test of the hypothesis is significant at 0.05. It means there is significant difference MPS students' achievement between the students in PBL classroom and their counterpart in conventional one.

Interaction between Learning Approach and MPK towards MPS Achievement. Two-way Anova is used to test the existence of interaction between learning approach and MPK towards MPS ability. The result is there is no common effect between learning factor with MPK towards students MPS achievement in both groups. The students MPS average score based on learning approach and MPK is presented in Figure 2.

![Bar Chart](image)

Figure 2. Students MPS Average score based on learning approach and MPK

Interaction between Learning Approach and School towards MPS. Statistical test of hypothesis about interaction between learning factor (PBL, Conventional) and level of school (upper, middle, lower) is not significant. So, we concluded that there is no interaction between learning factor and school level towards students MPS achievement.

Analysis and Discussions on Students Performance. Many students get high score in solving problems test that measure their representation ability as a part of understanding the problem, i.e., sketch the picture/graph associated with the words problem such as for problem 1 such that they easily represent that sketch into mathematical models. Example of the student representation ability is presented in Figure 3. This student belongs to experiment classroom.
Figure 3. The Student Performance on Problem 1 of MPS.

Although a large amount of the students get high score for problem 1, but some of them get low score for this problem. Actually, many students do not make the sketch (the graph) or other representation so it is harder for them to arrive at the right solution.

Figure 4. Another Student Performance on Problem 1 of MPS

It can be seen from Figure 4, the student gives the graph but the solution for the problem is not comprehensive enough so they do not know what must to do next. It indicate that some of the students have grasped the concept of Pythagorean completely, but they forget about how to find square root number such that it hard for them to finish the problem. The fallacy is not due to the instrument since it has validated by five education experts. Moreover, the teacher has implement instruction properly. Probably the student counts for the fallacy. So, the researcher asked this student why his work was so bad and the answer is he do not like mathematics. So, the next research maybe should include attitude aspect. Like or dislike towards mathematics is influenced by the fact that the students are rarely engage in problem solving activity (Wilson 1997), such that the knowledge is not store in longterm memory and hard to retrieve whenever needed (Hiebert & Carpenter, 1992; Carpenter Lehrer 1999).
Problem 6
Look at the picture of a kite below. Every edge of the kite are made of bamboo, so do their diagonal. The length of vertical diagonal of the kite is 40 cm, and the horizontal one is 24 cm. A button is put at every 5 cm at each side of a kite. Compute how many button at least you need for these purpose. You must write every step you need to get the solution.

The student get difficulty in solving problem 6 (the last problem). It is interesting, for this problem the achievement of the students in experiment classroom is not higher than the achievement of the students in conventional one, i.e., average score of MPS for the students in experiment classroom is 1.97 of 4. Meanwhile, average score of MPS for the students in conventional classroom is 2.01 of 4 (See Table 2). Example of student performance in problem 6 is presented in Figure 5 and Figure 6.

Figure 5. The Student Performance on Problem 6 of MPS

Figure 1 indicates that this student actually can finish the problem but he has no time anymore to do it. His time has out to solve five other problems.

The performance of the student in Figure 6 is almost perfect, only slightly fallacy he made, that is, he doesn't chek wheather his proposed solution is right. This student is lack of aspect number 4 of problem solving steps, i.e., reflection or looking back Polya (1981). In this experiment, this aspect include in aspect 3.

Overall, the performance of MPS of students who get PBL approach belongs to middle category. In the other side, the performance of MPS of the students who get conventional learning belongs to low category (the score is under ideal average score, ideal average score is 4).
Figure 6. Another Student Performance on Problem 6 of MPS

Average of Students' MPS Achievement Based on Learning Approach for each problem is presented in Table 2.

<table>
<thead>
<tr>
<th>Item</th>
<th>PBL</th>
<th>MPS*</th>
<th>Conventional</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.00</td>
<td>2.36</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.19</td>
<td>1.77</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.17</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.34</td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.97</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.97</td>
<td>2.01</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>2.733</td>
<td>1.682</td>
<td></td>
</tr>
</tbody>
</table>

* Ideal score = 4

At the end of the program, the study found weaknesses in students' mathematical problem solving ability involve lack of prior knowledge, poor mathematical understanding ability and strategy to overcome the problems. This is in line with Arslan & Altun (2007) and Napitupulu (2011).

CONCLUSIONS AND RECOMMENDATIONS

Based on the findings we conclude that: a) The student in PBL classroom get better MPS achievement than their counterpart in conventional classroom, b) There is no interaction between learning factor and MPK towards students' MPS achievement, and c) There is no interaction between learning factor and MPK towards students' MPS achievement.
It can be recommended that: (a) PBL should be applied as an alternative mathematics teaching approach to develop junior high school students' mathematical problem solving ability, (b) In applying PBL, teacher should have adequate mastery on its characteristics of PBL such as creating real contextual problem, guiding discussion, give scaffolding appropriately, ensuring availability of resources, and keep time available such that learning process run well, and evaluate students performance holistically, and (c) Future researcher need to investigate further whether PBL approach gives also significant effect on other mathematical competencies such as mathematical connection, representation, communication, and reasoning.

REFERENCES

